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1. Introduction 

1.1 Real Intelligence 
Saffron Technology was formed to build truly intelligent cognitive systems.  Rejecting 
traditional artificial intelligence and even “neural networks” as little to do with real 
neural systems, Saffron was inspired by the power of real neural devices, which we 
believe to be very complex, highly-nonlinear, nano-computing devices.  Specifically, we 
believe them to be associative memories.   
 
Figure 1 below (Segev, 1998) for example presents a number of different neural types, 
which all display a dendritic, tree-like structure.  Overall, these structures are dominantly 
linear.  The inspiration for Saffron to emulate such neurons as the fundamental building 
blocks of neuro-cogntive systems is this: how do such dominantly linear structures 
compute complex nonlinear associations?  The answers must rest in some form of 
compression and partitioning of associative memories into such linear and dendritic 
structures.  We believe that neurons have solved the “crossbar problem”.  Naïve hardware 
implementations as associative matrices connect everything to everything else in a 
complete, geometric crossbar.  In contrast, neural inputs are known to store associative 
strengths and to interact with each other, but there is no obvious crossbar in these 
devices. 
 

 
 
Figure 1: Inspiration for dominant linearity in real dendritic neural structures 
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The history of “neural” networks has not appreciated this potential power of neural 
devices.  In fact, the rebirth of neural networks in the 1980s was founded largely by the 
school of Parallel Distributed Processing (PDP).  This approach (Rumelhart and 
McClelland, 1986) argued that neurons are slow, inaccurate, and otherwise weak 
computational units.  The power of neural systems is provided in the massive numbers of 
such units.  Weak neurons are “saved” only by massive parallelism of distributed 
representations.  While such neuro-computations succeeded in many industries, beyond 
more traditional AI, the dismissal of neural complexities resulted in many limitations.  
Most of these traditional neural network models are highly-parametric, slow to learn, 
non-incremental, and subject to over-fitting.  This is not how our brains work. 
 
Fortunately, there is now an increasing turn toward more realistic cognitive systems and 
more realistic neurons.  There is also a growing belief that neurons are memories and that 
memory-based systems are the foundation of “real intelligence”.  Most recently, Jeff 
Hawkins has popularized the trend toward such real, memory-based intelligence in his 
book, On Intelligence: How a new understanding of the brain will lead to the creation of 
truly intelligent machines (2004).   Very much like Saffron’s concerns with compression 
as the way neurons represent nonlinear interactions within linear structures, Hawkins 
predicts that neurons must be capable of “coincidence detection on thin dendrites”.  In 
other words, neurons are associative memories and these associations are represented 
within the thin, linear processes of each dendrite. 
 
Saffron’s current products are software systems relying on Von Neumann computing 
architectures, but Saffron believes that real neurons are physical devices and that more is 
to be gained by deeper understanding and emulation.  In addition to increased scientific 
understanding, this is also likely to be a very large business and probably an entire new 
industry.  To again reference Hawkins, he believes that associative memories are the 
fundamental unit of future cognitive systems:  “One day more silicon will be devoted to 
associative memories than for any other purpose.” (“That’s not how my brain works”, 
MIT Technology Review, 1999). 
 
The work reported here, supported by AFRL, has moved Saffron closer to these goals.  
Saffron has an enormous lead in the underlying implementation and application of 
associative memories for a wide variety of problems.  Our proof points range from 
powering the “World’s Best Spam Blocker” (PC User Magazine review of Electronic 
Learning Assistant, 2003) to uniquely solving the pains and failures of the intelligence 
community in alias detection and database disambiguation (Case Study, available from 
Saffron, for classified customer).  Other applications include military logistics and ISR 
decision support systems using our memory-based, experience-based approach.   
 
However, Saffron’s products are currently 100% Java.  In order to continue its scaling for 
the most difficult problems in national security and large enterprises generally, we need 
to move to more hardware-based “appliance” systems.  From near term appliance models 
to the far term vision of associative memories embedded in every device, this AFRL 
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work initiated this new corporate direction.  We made progress in the engineering of our 
systems in hardware as well as in further understanding of what real neurons might do. 

1.2 Scope of work 
The project began by assuming two levels for defining a unified cognitive architecture: 

• Building Block. In biological terms, this level assumes that the neuron is the 
fundamental computing device.  Therefore, such a “building block” is singular.  
Unlike most data modeling techniques and the grab-bag of data mining 
techniques, each of which is appropriate for only one function, this building block 
is assumed to be universally powerful.  This is in fact the case for Saffron’s 
software in that one underlying representation supports a large number of 
different inferential functions.  The goal of the building block effort was to port 
Saffron’s software designs into VHDL.  Also, hardware-based neurons might lead 
to further understanding of this universal cognitive device. 

• Cognitive Constructs.  Assuming the building block, the project had planned to 
demonstrate this building block within a small number of different cognitive 
constructs, also in VHDL hardware specifications.  A wide number of such 
constructs can be enumerated.  For example, many neural principles are now 
textbook cases (for instance, see the classic Principles of Neural Science by 
Kandel et al., 2000).  Saffron also has developed a large number of associative 
memory “design patterns” that have served a number of different applications.  
The breadth of these principles and patterns across a range of applications already 
proves the universal nature of the building block, but the intention was to further 
describe these constructs in VHDL. 

 
However, as specific application requirements for the cognitive constructs unfolded, they 
moved more towards general Information Management rather than specific embedded 
systems.  Embedded systems will tend to use building blocks in dedicated ways that also 
require the Cognitive Construct to be embedded in hardware.  For example, this work 
began with the development of an embedded design for Cognitive Maps with Unmanned 
Combat Air Vehicles (UCAV).  A Cognitive Map is one such cognitive construct for 
representing external space and how to explore and navigate it using an internal memory.  
Given the requirements of on-board autonomy and real-time rates, such initial designs 
were intended for embedded systems of both the building block and cognitive constructs. 
 
Both AFRL Information Directorate interests and Saffron’s business interests redirected 
this work toward General Information Management.  Based on Saffron’s experience, 
such general purpose applications require a more general purpose micro-processor to 
support a wider number of construct and application types, which should remain in 
software to maximize their flexibility and extension.  For example, Saffron’s product 
design separates SaffronOne as a singular core engine used in many different ways.  This 
core can be seen as the universal building block, while many information management 
applications that use it are more flexible and variable. 
 
Embedded systems remain as a large potential future of a hardware building block, but 
for the business of moving Saffron products to an appliance model, the SaffronOne 
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engine is the “hot spot” and would most benefit from hardware processing.  As will be 
described in Future Directions, other current research in cognitive hardware platforms, 
which Saffron intends to work with, also provide for such software-hardware mixes. 
 
Therefore, only the Building Block itself was reasonable to port to VHDL as will also be 
described and became the greater focus on this effort overall.  The project work evolved 
into two primary investigations, both around different aspects of the Building Block: 

• Development of hardware from current methods.  This portion of work was 
essentially a specification and porting exercise.  Given Saffron’s current methods 
in software, much of this work and report is dedicated to specifying the core 
methods and then describing them in VHDL behavioral descriptions.  Even 
though this effort did not drive down to RTL descriptions, this work and report 
serves to prove and communicate Saffron’s algorithms and possible hardware 
designs for subsequent synthesis and implementation. 

• Research of neural devices for new methods.  While Saffron has made much 
progress in its respect for neural inspiration, there is still an enormous gap 
between its current algorithms and the Holy Grail of what real neurons must be 
computing with much more power and elegance.   From its inception, Saffron has 
implemented and explored a number of additional methods, with more or less 
success.  This work was an opportunity to further explore such intriguing but still 
unknown methods within real neural devices.  We failed to reach the big 
breakthrough of neural theory, but we did make great strides in some new 
methods that will be practical to both software and hardware implementations, 
although hardware is more clearly required for these additional methods and hints 
at the needs for a “neuromorphic” device. 

1.3 Outline of Report 
This report is organized as follows: 

• Building Block Algorithm.  Describes the compression and partitioning 
algorithms for Saffron’s associative memory representation. 

• VHDL Design.  Describes the rationale, VHDL elements, and testbench and 
waveform proofs of the hardware design effort. 

• Advanced Explorations.  Describes new algorithms and results for further 
compression, including how these methods require hardware parallelism, perhaps 
based on message passing in real neurons. 

• Accomplishments and Lessons.  Summarizes progress made in VHDL 
development and algorithmic research, as well as discussion of failures and 
lessons learned. 

• Future Directions.  Discusses Saffron’s growing need for a hardware appliance 
and plans for continuing this work in an AFRL supported SBIR.  Includes review 
of neural network quantum algorithms speculation about long-term future. 

 
All VHDL code listings for several versions of the Building Block are included in an 
appendix.  Although Cognitive Constructs were not explicitly pursued in VHDL, and 
therefore not a direct effort leading to any new accomplishments, a number of examples 
have been presented in prior reports to demonstrate how the memory-based building 
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block can in fact provide the core of a unified cognitive architecture, which remains as a 
continuing goal of this work and Saffron’s business interests. 
 

2. Building Block Algorithm 

2.1 Memory-based Reasoning 
Saffron provides a unified cognitive architecture based on memory. The neuron is 
understood to be the fundamental unit of nervous systems, and we propose that most 
neurons are memory devices.  Some cognitive architectures are heterogeneous in that 
they assume a number of different functions, each provided by “black boxes” that utilize 
different methods, each method selected as best suited to its function.  However, we 
believe that all human cognitive functions are implemented in memory-based neurons 
and that artificial cognitive architectures should also be homogeneous, in which all 
functions are provided by a single memory-based building block (in addition to auxiliary 
neurons for sensory transduction, mapping, etc). 
 
At a functional level, this approach to cognitive inferencing is called memory-based 
reasoning.  In a classic article called, “Toward Memory-based Reasoning”, Stanfill and 
Waltz (1986) proposed that memories – not rules – should be the basis of cognitive 
systems.  More recently, David Aha (1997) coined the term “lazy learning” to describe a 
class of machine learning techniques such as case-based, experience-based, and memory-
based that are different from “eager learning” methods such as most neural networks and 
statistical methods which try to model data.  For instance, whether using back 
propagation neural network or merely a polynomial line fitting formula, these methods 
seek to “fit” the data to a model.  One problem is that such models are highly parametric 
and are subject to over-fitting.  In contrast, lazy learners – like memories – are not fitting 
data to models but rather – like memories – are something between the raw data and such 
specific models.  The addition of more experience does not lead to model degradation by 
over-fitting.  More experience is simply more experience, which should be positive.   
 
As such, lazy learners follow a minimum commitment strategy for cognitive 
architectures.  Whereas eager learning models are intended to provide one and only one 
function such as classification, segmentation, or pattern completion,  the lazy learning 
approach can provide all such functions.  Eager learners assume a single function at 
modeling time.  They simply capture experience and then use this experience to answer 
one of many different questions put to them at run time.  This flexibility of the memory-
based approach can be demonstrated through a number of cognitive constructs, but all 
will be built with a single building block for providing such memory as a sort of neural 
unit. 
 
The Psychology of Learning and Memory is also informative.  Even at a general textbook 
level, a great debate is described between “gradualist” versus “absolutist”.  As in the 
common thinking about learning, change is thought to be gradual.  Animals learn trial-
after-trial and slowly improve in performing a given task.  Likewise, neural processes as 
the basis of learning are sometimes thought to be slow and require repetition, such as by 
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the slow modification of synaptic weights.  These assumptions have been adopted as 
common experience and are the basis for almost all traditional neural network models as 
well.  Such as in the Perceptron “convergence” procedures, connection weighs are slowly 
changed through repeated presentations of the data – often through many repetitive 
“eons” across all the data – before the model has been fully trained. 
 
While there is evidence for such slow processes, both in psychological function and 
physiological structure, there is also equal evidence for an absolutist theory.  Change is 
not slow but instantaneous.  While the sigmoidal learning curve is demonstrated by 
virtually all learning experiments, this is seen as an artifact of the animal population:  
Each individual animal might learn the “right” answer on any given trial.  For example, 
one learn which of many doors to go through to get the cheese, some animals will select 
and learn the right answer early, while others select and learn it later.  Each animal might 
instantly learn the right choice based on the first success and use this memory perfectly 
for all subsequent trials; however, the statistical report of all animals in general will show 
a gradual learning curve across trials.  Even within one individual when given complex 
tasks, it might take time to learn all the elements to perform the complete task, but 
discovery and memory for each element is instantaneous.  It takes time to learn the task 
but not because all the “weights” are slowly changing.  Each hypothesis-confirmation 
insight is instantaneously learned and remembered.   
 
Neurophysiology is also demonstrating how memory change, called Long Term 
Potentiation (LTP), can be caused by only one coincidence event, if the inputs are 
significant.  In this light, Saffron’s approach is more toward instant memory rather than 
gradual learning.  The objective is to store the observation of all coincidences as an 
associative matrix.  While learning is slow and lossy, memory is instant and lossless. 

2.2 Memory Scalability 
In order to provide a lossless memory, Saffron was founded on the belief that memory-
based architectures must also shift from philosophies of abstraction to philosophies of 
compression.  Traditional AI has often bemoaned the “curse of dimensionality” in the 
complexity of intelligent functions, whether logical or statistical.  As such, rule-based 
heuristics and statistical techniques are lossy, model-based abstractions. Abstractions lose 
information and accuracy.  For example, rules have problems in also covering exceptions 
to the rules, and market segmentations are very inaccurate in their predictions about each 
individual customer.  In contrast, memories seek to be perfect memories in the recording 
of experience, but because such stores do not scale well, the curse of dimensionality has 
been addressed by two approaches: 
 

• Compression.  The first objective is to make the memories smaller.  Smaller 
memories take less space and hold more information before resorting to 
abstraction and reduction.  We seek lossless compressions.  This eliminates a vast 
number of common compression methods that are useful for imaging and such, 
but do not serve well as an incremental memory.  For many reasons, lossy 
presentations can never be truly incremental. General compression – even if 
lossless – also will not work for a memory.  For example optimal, embedding 
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compressions like arithmetic coding do not provide a searchable compression.  
And more than merely being searchable, fast memories must allow random-
access.  The problem is akin to the compression of very large data cubes, which is 
notoriously difficult.  Saffron’s multi-memory system is equivalent to an 
associative memory cube.  However, incremental learning also requires that the 
compression allow for new data updates, which data cube compressions, even if 
randomly accessible, do not provide.  In summary, memory compressions must be 
limited to lossless, random access, and incremental update methods. 

• Partitioning.  While Saffron began with the development of memory 
compressions, we also learned that compression alone is insufficient for massive 
scalability.  As in a data cube, Saffron maintains a 2D associative matrix for a 
vast number of people, places, and things (elements of the third dimension).  Even 
if one memory is compressed and small enough to be resident in RAM, the 
extremes of scaling push many matrices to be much larger than this.  In any case, 
RAM must be managed across a vast number of memories.   These scales also 
require partitioning.  As such, Saffron includes the notion of an agent 
“perspective” for each plane of the data cube.  Each person, place, or thing is 
modeled by its own associative matrix.  Beyond this, even one very large matrix 
can require further partitioning and special organization.  For instance, this 
problem is much like that a very large spatial modeling.  Very large maps reside 
in persistence, but must be organized into partitions with co-localities so that 
queries efficiently fetch and use such organization.  Associative memories are 
also 2D “maps” but their functions and queries are different and need different 
organization to optimize query (and update). 

 
The follow sections provide explicit descriptions of Saffron’s compressions and partitions 
for associative memories.  Other methods have also been used and some are further 
explored in Advanced Explorations, but the following provides the best description of the 
core product’s engineering. 

2.3 External Context 
Saffron transforms the situation of the external world into “snapshots” defined as 
attribute:value, or key:value, vectors.  For example, a transaction record is defined as a 
vector of field-name and field-value tuples.  For unstructured sources such as news items 
of message cables, Saffron uses entity extractors to define the people, places, and things 
in each sentence for example.  These “entities” along with surrounding keywords 
describe the context: how each entity is associated with surround entities and keywords.  
As a cognitive construct, each entity is modeled as a separate associative memory, but for 
now, assume that all the attribute-values of a record or sentence (or XML stanza) are 
treated as one context to be observed into one matrix. 
 
For example, if we have a sentence of “John and Mary went to New York.”, we would 
group all the concepts/entities within the sentence into a single Context.  An entity 
extractor may extract the following key:value pairs. 
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 Person: John 
 Person: Mary 
 City: New York 
 
All the key:value pairs of a Context are associated against each other.  Therefore, a list of 
associations is created with 
 
 Person: John <-> Person: Mary = 1 
 Person: John <-> City: New York = 1 
 Person: Mary <-> City: New York = 1 
 
If another sentence is observed into the system, its associations are merged with earlier 
sentences.  For example, “John and Mary live in Seattle”.  An entity extractor may extract 
the following key:value pairs.  
 
 Person: John 
 Person: Mary 
 City: Seattle. 
 
The new Context’s list of associations would be 
 
 Person: John <-> Person: Mary = 1 
 Person: John <-> City: Seattle = 1 
 Person: Mary <-> City: Seattle = 1 
 
Merging the two lists of associations would be 
  
 Person: John <-> Person: Mary = 2 
 Person: John <-> City: New York = 1 
 Person: Mary <-> City: New York = 1 
 Person: John <-> City: Seattle = 1 
 Person: Mary <-> City: Seattle = 1 
 
As more contexts are observed, the list of associations grows.  As given associations are 
observed over and over again, the association count also grows. 
 
Obviously, as in Figure 2, a more useful way to view the list of associations would be in 
matrix form, where the key:value pairs are indices of the matrix. This matrix is called an 
association matrix, also known as a coincidence matrix. 
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Jo h n M a ry N ew  Y o rk S e a ttle

Jo h n 2 1 1

M ary 2 1 1

N ew  Y o rk 1 1

S e a ttle 1 1

Jo h n M a ry N ew  Y o rk S e a ttle

Jo h n 2 1 1

M ary 2 1 1

N ew  Y o rk 1 1

S e a ttle 1 1

Jo h nJo h n M a ryM a ry N ew  Y o rkN ew  Y o rk S e a ttleS e a ttle

Jo h nJo h n 22 11 11

M aryM ary 22 11 11

N ew  Y o rkN ew  Y o rk 11 11

S e a ttleS e a ttle 11 11

 
Figure 2: Symmetric associative matrix of coincidence counts 
 
The dimension of the association matrix grows at a O(N2)rate, where N is the number of 
key:value pairs.  The counts themselves grow at an O(logO) rate, where O is the number 
of observations.  Therefore the majority of this design is concerned with minimizing the 
N2 growth and capitalizing on the logO growth. 

2.4 Internal Attributes 
The first step is to change the external key:value information into an internal 
representation.  This allows for easier manipulation of the data.  Every value for each 
“key” and “value” is mapped to a numerical number (also called an “atom”).  Therefore 
the above example would be mapped to Figure 3: 
 

 
Figure 3: Atom table from external to internal attributes 
 
 

A t o m T a b l e ( V i r t u a l  S t o r e )

p e r s o n 1

J o h n 2

A t t r K e y / V a l u e  N N

M a r y 3

c i t y 4

N e w  Y o r k 5

S e a t t l e 6
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The “key” atoms and the “value” atoms are concatenated to produce an internal 
representation of the key:value pair: 
 
 Person: John  1:2 
 Person: Mary  1:3 
 City: New York  4:5 
 City: Seattle  4:6 
 
The concatenation of the key:value pair is represented via a single M bit numerical value 
(also called an Internal Attribute).  Where the first M/2 bits of the Internal Attribute is the 
key atom and the second M/2 bits is the value atom.  Note that this example tracked the 
key atoms and value atoms in the same map.  If the key and value atoms are tracked in 
separate maps the splitting of the M bit Internal Attribute could give more or less bits to 
the value atoms based on need. 
 
Most realistic implementations of the M bit Internal Attribute would set M to 64 (32 bits 
for key atom and 32 bits for value atom).  For simplicity our example will set M to 16 
bits (8 bits for the key and 8 bits for the value atom).  Therefore Internal Attribute for the 
key:value pairs are: 
 
 Person: John  0102 Hex  258 decimal 
 Person: Mary  0103 Hex  259 decimal 
 City: New York  0405 Hex  1029 decimal 
 City: Seattle  0406 Hex  1030 decimal 
 
This scheme, while simple, provides an important property for later efficiency:  All the 
values are low bit variations within the scope of the high bit keys.  Therefore, all the 
internal attributes for values within a key are co-located within the internal attribute 
distance.  Depending on the type of matrix used, this collocation property will be critical 
to asking questions of the associative matrix and having a run of all the possible answers 
be close to each other within a physical partition. 

2.5 Association Matrices 
The internal attribute and the association counts are written to the association matrix.  
There are two types of Association Matrices where each have their pros and cons. 
 
The “Large” Association Matrix is a 2M X 2M matrix where the M bit internal attributes 
are the indices as in Figure 4.   
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Figure 4: Virtual attribute addressing of Large Associative Matrix 
 
Using the internal attribute as an index allows for a natural ordering by keys as described 
(i.e., all the people are together).  This order is utilized in queries that request all 
associated attributes given an attribute and a key (i.e. all people associated with the city 
of New York).  The Large Association Matrix is typically a very large, sparsely filled 
matrix; therefore the algorithm concentrates on areas in the matrix with data while also 
ignoring areas without data.  Such matrices can auto-associate 10K to 10M attributes, 
making them very sparse. 
 
Assume that the example context of (Person:John, Person:Mary, City:New York) and 
(Person:John, Person:Mary, City:Seattle) is observed into an Association Matrix in 
Figure 5.  
 

 
Figure 5: Actual values within Large Association Matrix 

0 … 0

0 … 0

0 … 2 … 0

0 … 0

0 … 2 … 0

0 … 0

0 … 0

20

InternalAttr 1

InternalAttr 2

2M

20 InternalAttr 1           InternalAttr 2                        2M

000000000216

000000000…

0000011001030 (City:Seattle)

0000011001029 (City:New York)

000000000…

001100200259 (Person:Mary)

001102000258 (Person:John)

000000000…

0000000000

216…10301029…259258…0Internal Attribute

000000000216

000000000…

0000011001030 (City:Seattle)

0000011001029 (City:New York)

000000000…

001100200259 (Person:Mary)

001102000258 (Person:John)

000000000…

0000000000

216…10301029…259258…0Internal Attribute



 

 12

The Large Association Matrix has the following pros and cons: 
• Pros. First, key:values are directly mapped to the matrix indices.  This provides 

quick and direct computation of the index with no need to re-map the matrix 
indices through a translation table.  Second, The key:value pairs are naturally 
grouped together in linear sequence, which allows for quick scanning of the 
matrix, such as when asking a question about any certain key.  Finally, the Large 
Matrix is a fully square matrix; even though it is symmetrical, an association is 
stored twice as key:value1  key:value2 and key:value2  key:value1.  While 
this is redundant information, this allows all given key:values to have their own 
“row” of contiguous key:value answers, which will be come important as the 
matrix is linearized and segmented, as in subsequent descriptions. 

• Cons.  Large Matrices also have large footprints.  Even with the following 
methods of segmentation and bit plane separation, the bits can be sparse and 
expensive to maintain.  On the other hand, for such very large matrices, 
compression is made as strong as possible but the focus is on collocation of bits to 
quickly answer queries within a given key – not just collocation for the sake of 
compression per se. 

 
As a cognitive construct, Large Association Matrices play their best roles as large 
associative directories, for example.  As something like a router, such memories lookup 
key:values  that tend to be the indices to other, smaller memories.  Such Large Matrices 
tend to also be few in number and represent the “Big Picture”, while smaller memories 
capture the details.  
 
Each smaller matrix, called a Small Association Matrix, also stores the association counts 
between internal attributes.  However, the Small Association Matrix gives more emphasis 
to compressing per se into a small memory footprint and less emphasis to fast query 
(read) times when the space becomes very large as in Large Matrices. 
 
The rows of the Small Association Matrix are reorganized to only track the row/columns 
of the matrix that contain data.  As shown below, this is accomplished by an intermediate 
step, a translation table that maps the internal attribute to a new row/column index.  Also 
since the matrix is symmetric and the emphasis is on compression, only the bottom ½ of 
the matrix is tracked.  Small Matrices are lower triangular as in Figure 6. 
 

InternalAttr Row/Col

258 0

259 1

1029 2

1030 3

InternalAttr Row/Col

258 0

259 1

1029 2

1030 3

InternalAttrInternalAttr Row/ColRow/Col

258258 00

259259 11

10291029 22

10301030 33

InternalAttr 0 1 2 3

0

1 2

2 1 1

3 1 1

InternalAttr 0 1 2 3

0

1 2

2 1 1

3 1 1

InternalAttrInternalAttr 00 11 22 33

00

11 22

22 11 11

33 11 11

 
Figure 6: Translation table from internal attributes to Small Matrix location 
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The Small Association Matrix also has its pros and cons: 
• Pros.  The footprint is very small.  Associative counts are much less sparse and 

only half of the full matrix needs to be represented.  Given any two internal 
attributes, their associative count is contained at the greater’s row and lessor’s 
column. 

• Cons.  The translation table is an added cost for computation and storage.  Also, 
attributes are now arbitrarily located, requiring more random accesses for 
disbursed associative counts, unlike the Large Matrix with co-located values for 
scanning.  

 
On the other hand, Small Matrices are very much more likely to be containable in RAM, 
which allows efficient random access, while Large Matrices tend to NOT fit in RAM.  
The I/O bottleneck becomes dominant and so the co-location of attributes becomes more 
critical.  In summary, these matrix types and the methods that follow are not so much 
about compression algorithms alone.  Moreover, these matrices are not about the optimal 
solution for size and operation of just one such matrix.  More towards the scale of an 
entire brain, Saffron builds millions of such matrixes, mostly Small with some Large, for 
large, enterprise scale applications.  For such applications, I/O is the dominant bottleneck 
and so these matrices are optimized toward 2 different strategies for two different roles:  
If very, very large, then collocate and partition to send only parts between cache and 
store.  If small, then compress to send the whole thing but smaller between cache and 
store. 
 

2.6 Segment Structure 
Data from within either of the association matrix types is then viewed as a long list of 
counts.  The list of counts is partitioned into subsets of size L x K, where L is the number 
of map bits and K is the number of bits in the plane data, which will be further defined.  
Realistic implementations would set L and K to be 64 bits, but for simplicity L and K are 
set to 4 bits.  Therefore, the linear representation of an association matrix is partitioned 
into smaller segments of 16 counts.  Segments that contain only counts of 0 are ignored. 
 
To demonstrate the matrix as a linear list of counts, the example association matrix is 
written as a stream of data: 
 
 0-0- … 0-0-2-0- … -0-1-1-0  … -0-2-0-0- … -0-1-1-0- … -0-1-1-0- …-0-1-1-0- … 0 

 
The entire Large Association Matrix is broken up into 268,435,456 segments of 16 
counts as shown in Figure 7. 
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…

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

…

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

…

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

…

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

…

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

…

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

…

0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-00

DataSegment #

…

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

…

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

…

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

…

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

…

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

…

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

…

0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-00

DataSegment #

 
 
Figure 7: Virtual list of segments in Large Matrix 
 
This segment structure only tracks segments that contain non-zero data, therefore the 
example Large Association Matrix is completely defined by the following segments in 
Figure 8. 
 
 

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

DataSegment #

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

DataSegment #

 
Figure 8: List of actual segments that have association counts 
 
The example of the Small Association Matrix is also written as a stream of data defined 
by a linearization of a lower triangular matrix.  A number of shape-filling curves are 
possible to linearize and co-locate 2-D maps for example.  Matrices are also 2D maps of 
a sort, and the simple line-curve, row-by-row, through the lower triangular matrix seems 
to have the best space filling properties and query performance.  As such, the Small 
Matrix example is linearized into the following counts: 
 
 2-1-1-1-1-0 

In this case, the Small Association Matrix is broken up into only 1 segment of 16 counts 
as in Figure 9. 
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2-1-1-1-1-0-0-0-0-0-0-0-0-0-0-01

DataSegment #

2-1-1-1-1-0-0-0-0-0-0-0-0-0-0-01

DataSegment #

 
 
Figure 9: List of single segment in Small Matrix 
 

2.7 Bit Planes 
Each segment is then represented as a set of bit planes.  Bit plane separation is a well-
known method of compression, such as used within JPEG for images.  For images, of 256 
bits for example, each of the 256 “planes” in the power of 2 series accounts for every bit 
for all pixels that have the specified bit ON within the particular plane.  It’s as if all the 
pixel values were represented in binary and the entire image turned on its side.  Each 
plane then represents all the bits at each level in the power series.   
 
While this is well known a part of image compression, it is particularly valuable for 
associative matrix compression. In images, the bits can be found arbitrarily in any plane, 
completely dependent on the image and pixel encoding.  In this sense, a bit at any plane 
is equally likely as any other bit at any other plane (in general).  Associative matrices, 
however, are machine learning systems.  In this case, lower counts are more likely than 
higher counts in the sense that higher counts are required only as the observation load 
increases.  This demand is logarithmic in that twice as many observations must be seen 
beyond the current observations just to increase the number of planes by just one more 
plane.  Rather than allocate a fixed counter size, which is underutilized (or will 
overflow), bit planes are generated only on demand.  Matrices with shallow loadings 
require only a few bit planes, while more resource is devoted to deeper matrices that have 
higher loadings.   
 
Moreover, while images are separated into bit planes, the linearization of associative 
matrices and the separation of segments allow the demand-based growth of bit planes to 
be further limited by the greatest count of each segment – not the entire matrix plane.  
Co-location in 2D images leads to other compression methods such as Quad-trees or R-
trees.  But as discussed, optimal key-value co-locality of associations is more linear and 
therefore organized into linear segments.  In any case, the entire matrix can be viewed 
from the side in terms of its segments and bit planes; where counts are high the segment 
will require more bits, while other areas of the matrix might require less. 
 
For example, a data set of 4 counts 
 

{1, 3, 9, 18} 
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can be represented in binary as 
 

1  00001 
3  00011 
9  01001 
18  10010 

 
Therefore, the bit planes would be 
 

Counts  {1, 3, 9, 18} 
Bit plane 0   {1, 1, 1, 0} 
Bit plane 1  {0, 1, 0, 1} 
Bit plane 2  {0, 0, 0, 0} 
Bit plane 3  {0, 0, 1, 0} 
Bit plane 4  {0, 0, 0, 1} 

 
Again, supposing the counts are 32 bit numbers and are initialized to 0, an increment for 
each association observed will rarely use the upper bits unless all the associations are 
heavily loaded.  However, in the same way that associative matrices tend to be sparse 
(include many zero values), they also tend to be sparse in the bit-plane direction, tending 
toward lower values.  Therefore, use of bit planes reduces the amount of physical 
memory needed to store the counts. 

2.8 Sub-Segments 
The data stored within a bit plane is called a sub-segment.   The sub-segment structure 
consists of an array of a bit-masked lookup map and one or more data elements. Data 
contains information if the corresponding association count contains a “1” for that plane.  
The actual representation of the data only lists data that contain non-zero values.  The 
map is stored in the 0th location in the given plane and the next least significant bit of the 
map corresponds to the next data. 
 
For example, assume an L x K segment of data (where L = 4 and K = 4) 
 

{1011 0000 0000 0110} 
 
This is broken up into 4 sets of 4 bits 
 

Sub-segment 1 = {1, 0, 1, 1} 
Sub-segment 2 = {0, 0, 0, 0} 
Sub-segment 3 = {0, 0, 0, 0} 
Sub-segment 4 = {0, 1, 1, 0} 

 
Sub-segment 1 and 4 contains data and Sub-segment 2 and 3 do not contain data.  
Therefore the Index Map turns bits on when the corresponding Sub-segment has data. 
 

Index Map =  {1, 0, 0, 1} 
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As shown in Figure 10, the index map is read as saying that sub-segment 4 contains data 
=1, sub-segment 3 does not contain data =0, sub-segment 2 does not contain data =0, and 
sub-segment 1 contains data = 1.  Therefore the sub-segment would reduce to just the 
map and two data elements. 
(Note the inverted notion with sub-segment 1 on the bottom of the map diagram.) 

 
Figure 10: Sub-segment structure of map and data elements 
 
From segment to data elements, the entire structure looks like Figure 11. 
 

 
Figure 11: Entire matrix structure from segments to bit planes to sub-segments 

Plane 0 Sub-Segment

1 0 1 1

Map

1

0

0

1
0 0 0 0

0 0 0 0

0 1 1 0
Actual data representation:

plane[0] = {1001, 1011, 0110}

Bit Plane (Planes exists only 
when data is present)

Ordered Set of Segments

Segment 1

Segment 2

Segment N
Plane 0 (0th bit)

Plane 1 (1st bit)

Plane 32 (32nd bit)

Plane 1 Sub-Segment

Plane Data (K bits)

Plane Data (K bits)

Map

(bits)

Lth

…

3rd

2nd

1st

0th

Plane Data (K bits)
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2.9 Matrix Examples 
The above “Person: Mary, Person: John, City: New York, City: Seattle” example can be 
represented as a Large Association Matrix (just for example), compressed down to Figure 
12. 

 
Figure 12: Repeated example of Large Matrix segment list 
 
The structure for Segment 1056784 is shown in Figure 13. 
 

 
Figure 13: Structure of example segment down to actual data representation 
 
The segment has only one association count with a value of 2.  Therefore, we would 
expect this count to be represented in plane 1 (a value of 21).  The planar map will have 
only one sub-segment with a value and the planar data will indicate the location of this 
value as the 4th location, the 4th bit in the first sub-segment.  This is summarized in the 
actual data representation.  The structure for Segment 1056832 is shown in Figure 14. 
 

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

DataSegment #

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04214800

0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-04218896

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01060928

0-2-0-0-0-0-0-0-0-0-0-0-0-0-0-01060880

0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-01056832

0-0-2-0-0-0-0-0-0-0-0-0-0-0-0-01056784

DataSegment #

Bit Plane

Ordered Set of Segments

Segment 1056784

Segment 1056832

Segment 4214800

Plane 1 (1st bit)

Plane 1 Sub-Segment

0 0 1 0

Map

0

0

0

1
Segment 1060880

Segment 1060928

Segment 4218896

Plane 0 (0th bit)

NULL

Actual data representation:

plane[0] = null
plane[1] = {0001, 0010}
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Figure 14: Another example segment down to actual data representation 
 
The structure for Segment 1060880, 1060928, 4214800, and 4218896 would be 
represented in a similar way.  The complete structure of the matrix is as follows in Figure 
15. 
 

  
Figure 15: List of segments and all actual data representations 
 

Bit Plane

Ordered Set of Segments

Segment 1056784

Segment 1056832

Segment 4214800

Plane 0 Sub-Segment

0 1 1 0

Map

0

0

1

0
Segment 1060880

Segment 1060928

Segment 4218896

Plane 0 (0th bit)

Actual data representation:

plane[0] = {0010, 0110}

Ordered Set of Segments

Segment 1056784

Segment 1056832

Segment 4214800

Segment 1060880

Segment 1060928

Segment 4218896

plane[0] = null
plane[1] = {0001, 0010}

plane[0] = {0010, 0110}

plane[0] = null
plane[1] = {0001, 0010}

plane[0] = {0010, 0110}

plane[0] = {0001, 0110}

plane[0] = {0001, 0110}
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The Small Matrix also uses the segment-based compression.  Recall that the Small 
Association Matrix example was represented by the single segment in Figure 9, here 
repeated as Figure 16. 
 

2-1-1-1-1-0-0-0-0-0-0-0-0-0-0-01

DataSegment #

2-1-1-1-1-0-0-0-0-0-0-0-0-0-0-01

DataSegment #

 
 
Figure 16: Repeated example of single segment for Small Matrix 
 
As such, the bit plane and sub-segment representation is shown in Figure 17. 
 
 

Bit Plane

Ordered Set of Segments

Segment 1

Plane 1 (1st bit)

Plane 1 Sub-Segment

1 0 0 0

Map

0

0

0

1Plane 0 (0th bit)

Actual data representation:

plane[0] = {1100, 0111, 1000}
plane[1] = {0001, 1000}

Plane 0 Sub-Segment

Map

0

0

1

1 0 1 1 1

1 0 0 0

Bit Plane

Ordered Set of Segments

Segment 1

Plane 1 (1st bit)

Plane 1 Sub-Segment

1 0 0 0

Map

0

0

0

1Plane 0 (0th bit)

Actual data representation:

plane[0] = {1100, 0111, 1000}
plane[1] = {0001, 1000}

Plane 0 Sub-Segment

Map

0

0

1

1 0 1 1 1

1 0 0 0

 
 
Figure 17: Structure of Small Matrix example down to actual data representation 
 
For example, plane 1 (bit value of 21) shows only one bit of power 2.  This 2 count is in 
the first sub-segment..  Within the first segment, the data shows it in the first position.  
This represents the total count of 2 in the first position of the one and only segment.  The 
four value of 1 in the segment exist at plane 0 (bit values of 20).  These bits cross two 
sub-segments as indicated by the map, with the planar data for each sub-segment showing 
the exact location of 1 bit and 3 bits, respectively in each sub-segment. 

2.10 Virtual Store 
For Large Matrix structures, the number of segments can grow very large. The total 
memory requirements can be larger than the system’s total memory.  Therefore structure 
is used in conjuncture with a Virtual Store caching system that divides the large 
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structures into many smaller blocks that can be loaded and purged from memory as 
required.  Figure 18 shows a combination of the Large Matrix example within a block-
oriented Virtual Store.  As well, Small Matrices can be smaller than the block size and 
can be combined in more efficient ways. 
 

 
Figure 18: Structure of example segment down to actual data representation 
 
Such a block-oriented design can rely on standard hierarchical persistence schemes, but 
the point is again that very large scale associative memory applications are different than 
single matrix embedded systems.  Whether for hardware or software processing, the 
problems of memory-intensive applications are like those of data-intensive applications.  
The solutions of compression and partitioning are used to store a massive number of such 
matrices, few of which need to be resident at any one time but which must be quickly 
fetched in whole or part to update them with new associations or read them to support a 
broad number of queries. 
 
This explanation of matrix types is intended to demonstrate the representational structure.  
It is not a process model.  In other words, Saffron does not actually start with a complete 
coincidence matrix and go through the steps of segmentation and bit-planing for example.  
Saffron is not a method of such compression.  Rather, it is an incremental learning 
method in which such representations are dynamically constructed and maintained.  As 
new contexts are observed, new key-values are encoded and possibly translated, new 
segments might be created, or new bit planes might be formed.  These dynamics, 
including some basic query functions, are described in VHDL behavioral specifications 
as described next. 
 

Ordered Set of Segments

Segment 1056784

Segment 1056832

Segment 4214800

Segment 1060880

Segment 1060928

Segment 4218896

Virtual Store 1

Segment 1056784
Segment 1056832
Segment 1060880

Block Ref 1

Segment 1060928
Segment 4214800
Segment 4218896

Block Ref 2

DB or File System

plane[0] = null
plane[1] = {0001, 0010}

plane[0] = {0010, 0110}

plane[0] = null
plane[1] = {0001, 0010}

Block Data 1 Block Data 2

plane[0] = {0010, 0110}

plane[0] = {0001, 0110}

plane[0] = {0001, 0110}
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3. VHDL Design 

3.1 Approach and Challenges 
The goal of the system design was to build an associative memory in hardware capable of 
simulation based on the software design (known as “SaffronOne”) where appropriate and 
beneficial.  In the end, the software design was referred to on occasion, but many of the 
natural design decisions for software could not be applied to the hardware design.  As a 
result, several assumptions were made in order to make the process of porting from 
software to hardware more manageable. 
 
A recurring challenge for the hardware design was how to accommodate the dynamics of 
the data structures just described.  The ability to dynamically grow (or re-organize) a data 
structure is seldom even a consideration in a high-level software design.  Libraries 
providing dynamic lists, hash tables, trees, etc. are all readily available and easily 
integrated.  This is more difficult in hardware and is the subject of many elements. To 
manage the risk, some of the dynamics were removed in order to make progress on other 
aspects of the VHDL design.  This issue is also further discussed in Accomplishments 
and Lessons. 

3.1.1 Existence matrix 
One of the more interesting dynamic structures in the software design deals with how the 
associative memory counts are represented.  In order to minimize the amount of space 
consumed by a count, the Saffron associative memory representation employs the use of 
bit planes to insure that only the minimum numbers of bits are persisted.  However, this 
requires that whenever a count is incremented (including from 0 to 1), the structure of 
bits must also be modified, which is to say, grow the memory footprint.  In order to shield 
the hardware simulation from this additional complexity, the decision was made to 
implement an “existence matrix”.  This matrix only records whether or not the co-
occurrence has ever been observed, and not how many times that observation took place.  
This assumption allowed the bit-wise planar structure to be static, in that the plane must 
be allocated for the first occurrence, but additional occurrences do not require additional 
memory growth as the count will never exceed 1. 

3.1.2 Context Size 
Early on, it was clear that there must be some restrictions on the size of the input context.  
In software, this is essentially an associative array (or hash table) of unlimited size.  The 
hardware approach for this could have been to build a stream-based input mechanism; 
however, that would have immediately constrained the performance, and it is not clear 
how all n(n-1) attribute pairs would have been acquired in an efficient way when reading 
from a serial stream.  Instead, the approach was to provide dedicated input lines for each 
attribute in the context, and then use generics to parameterize the design.  In this way, an 
associative memory could be instantiated given some upper bound for context size.  This 
was deemed an acceptable limitation, since knowing the maximum context size is quite 
likely for any given application (as opposed to limiting the size of the attribute space in 
the memory).  The simulated implementation uses a context size of 4 attributes, just for 
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demonstration.  Actual context sized for most applications range from 10 to 100, more 
toward 20-30 on average such as for modeling data records or unstructured paragraphs.  
However, very large context vectors might be imagined for military situations.  At the 
extreme, genomic micro-arrays are defined as thousands of gene co-regulations.  Context 
streams, ongoing state machines, and other designs are likely for different situations, but 
the vast majority of Saffron’s current applications use more modest context sizes.  Each 
context is “clamped” for each observe (write) or imagine (read) operation, and then 
followed by another perhaps totally different context and different operation. 

3.1.3 Raw counts 
The SaffronOne software implementation employs the use of various algorithms to 
interpret the counts in the associative matrix to answer queries with a probability 
confidence.  These algorithms are called calculators.  In the current SaffronOne 
implementation, these calculators are in close proximity to the components that manage 
the matrix itself and are used when performing queries.  However, when designing the 
hardware implementation it became clear that not only would implementing these 
calculators in hardware require a great deal of effort, but it highlighted the fact that 
including these calculators at that level of abstraction was probably an incorrect design 
decision. Even for the software implementation, it is better to separate the responsibility 
of associative memory representation from that of memory-based inference.  Moreover, 
there are many possible forms and philosophies of inference (inductive, deductive, 
Bayesian, non-Bayesian, analogical, etc), and many more yet to be discovered; therefore, 
it is better to allow for more freedom in developing new calculators on top of a more 
singular and “core” representation.  
 
As a result, the “clean room” hardware implementation was able to provide valuable 
insight into the software implementation.  The calculators are currently being removed 
from the SaffronOne core, so that both the hardware and software designs are only 
concerned with managing the matrix of counts.  All calculations are now done at a 
separate level of abstraction in the software product, and this will be an enduring theme 
of continued design of both our software and hardware efforts.  However, as part of this 
current effort in order to demonstrate some of the basic query (read) operations and to 
validate the total building block design, two elemental count-based metrics – experience 
and novelty – were designed and tested within all the VHDL matrix designs. 

3.1.4 Atom-based Interface 
In order to avoid the additional overhead of converting attribute categories and values 
into a low-level binary representation, it was decided early on that the hardware 
implementation would only be aware of attributes in their “atom” form.  This allows the 
hardware implementation to only be concerned with the binary representation of an 
attribute, including how many bits are used for the attribute key and how many are 
interpreted to be the attribute value.  
 
This decision also had an effect on Saffron’s product architecture and is aligned with 
continuing hardware plans.  This work in VHDL took place while Saffron was 
redesigning its product toward a fully distributed architecture.  In addition to removing 
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the calculator layer from the raw count layer, the atom table that translates key-value 
pairs into atoms was separated and placed in an overall layer, separate from the 
SaffronOne core servers.  As in the VHDL interface design, the SaffronOne product 
interface is now atom-based for more efficient distributed communication.  In discussion 
with future hardware platform providers such as from Washington University at St Louis 
(WuStL), this is also their distributed design for hardware-software interaction.  This 
common interface design will allow replacement of software components with hardware 
components using network protocols without major redesign of the software elements.  In 
any case, SaffronOne is now designed more as a machine-level service based on more 
efficient indices and “op” codes. 

3.2 Overall Architecture 
As we began the design of hardware, it became clear that there should be a focused effort 
on maintaining distinct interfaces between the developed components such that new 
behaviors could be quickly incorporated and evaluated.  One of the more powerful 
constructs that VHDL offers is the notion of an entity.  An entity is analogous to an 
abstract class in an object-oriented software language.  In the world of VHDL, this means 
that it only specifies the ports that are exposed by the entity.  An implementation 
(referred to as an architecture) can then be developed and then encapsulated by the entity 
definition.   One of the advantages realized by this abstraction is that a single test 
environment could be developed to validate the behavior of any number of architectures, 
such as for the different types of association matrix, because the test environment (or test 
bench) is bound only to the entity definition, not a particular architecture implementation. 

3.2.1 Associative Memory Entity 
The interface to the associative memory entity evolved over time, but eventually it fell 
out of the realization that it should reflect a context of attributes, since the context is such 
a fundamental representation in the Saffron associative memory.  The entity symbol is 
depicted in the Figure 19 below, with annotations briefly describing the various exposed 
ports.  These diagrams and all VHDL source code are provided in the appendix. 
 
Saffron defines associative memory reading and writing as “imagining” and “observing”, 
respectively.  This adds the more appropriate cognitive flavor to distinguish an 
associative memory from a traditional RAM.    However for hardware, the more standard 
write-enable (WE) and output-enable (OE) nomenclature is used.   
 
To model the way Saffron assumes the clamping of an attribute-value vector as one 
“snapshot” of the context, all attribute atoms can be specified in one clock cycle.  SEL 
merely indicates the size of the context instance.  In other words, the hardware design 
limits the maximum size of the context, and each individual context might be of lesser 
size (from a minimum of 2 to this maximum limit). 
 
Given an input context, the memory can be asked to merely observe it, in which case it 
will increment its counts to the added context associations.  However, for output 
operations, the memory must also know the question being asked.  While the complete 
Saffron implementation allows for a number of different functions, reading out the 
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cumulative associative strength of all the context elements to some other key:value as a 
“goal” is one such function.  If the goal is input, the memory can provide its associative 
experience (sum of associations to the context) and/or novelty (number of associations 
that do not yet exist).  As an output, the goal bus can also report the best value, when 
given the goal key, which Saffron also calls the “category”.  For example, given a 
situation of people places and things as given key:values, Saffron can answer the query 
for other likely related people (the goal category). 
 
 
 

 
Figure 19: Symbol Schematic for Associative Memory Entity 
 
Note that this device also has two basic control inputs for the clock (CLK) and a chip 
enable line (CE).  The clock is global and used to synchronize interactions with the 
persistence entity described in the next section. 

3.2.2 Persistence Entity 
Another generic entity was developed for simulating some form of persistent storage for 
the associative memory data to be kept and managed.  An entity was used for this 
component largely because its function was not particularly interesting or relevant to the 
overall project effort.  The ability to read or write a block of data could be implemented 
with anything from flash to some customized block device across a network.   The 
current work used a flash memory but subsequent work will focus very heavily on block 
device interfaces such as to a Storage Area Network, communicating with cache and the 
memory device across a network.  The basic parameters of the persistent device are the 
width of the address bus, width of the data bus, and the I/O delay values. 
 

3. Each attribute is given a 
dedicated input bus, so that the 
complete context can be 
available on a single clock cycle. 

7. Experience and novelty output 
scores to indicate how many of the 
context’s attributes are new and 
how many have been seen earlier.

6. Address and data lines to 
control read/write to the 
persistence component. 

5. Read/write control lines to 
manage persistence and indicate 
busy state (ready for next context). 

2. SEL to dictate how many 
attribute lines are active (part of 
context)

1. WE/OE to dictate if this is an 
observe (write) or imagine (output) 

4. Goal bus is inout, where upper 
bits are in (category) and lower 
bits are out (value). 
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The BasicFlash architecture is the only implementation of this entity, and it is responsible 
for managing a large array of data words.  The complete implementation is shown in 
Figure 20 below. 
 
architecture BasicFlash of Persistence is 
 
begin 
                        
 process 
       subtype WORD is STD_LOGIC_VECTOR(data_width-1 downto 0); 
       type MEMORY is ARRAY (0 to length-1) OF WORD; 
       variable mem: MEMORY;  -- can be backed by a file, when we use "real" flash model 
       variable addr_int : INTEGER; 
 begin         
     wait until (CE = '1' and rising_edge(CLK)); 
     if (WE'event and WE = '0') then -- if write enabled is on (active low), release bus 
       DATA <= (OTHERS => 'Z'); 
     elsif (OE = '0') then          -- Output Enable (Neg) --> Read from memory onto bus 
       addr_int := CONV_INTEGER(ADDR);    
       DATA <= mem(addr_int) after read_delay; 
     elsif WE = '0' then         -- Write Enable (Neg) --> Write from bus onto memory 
       addr_int := CONV_INTEGER(ADDR);    
           mem(addr_int) := DATA; 
       wait for write_delay;         
     end if; 
  end process;   
end BasicFlash; 
 

 
Figure 20: VHDL implementation of BasicFlash 
 

3.2.3 Top-Level Schematic 
The top-level system schematic is depicted in Figure 21 below, showing how the 
associative memory and persistence entities are wired up, along with the external 
interfaces to the system and defined generics for this particular instantiation of the 
entities.  For this instantiation, the context size is limited to 4, and the attribute width is 
16 bits, where the top 8 represent the key category and the lower 8 represent the value. 
 
Notice how the control lines for persistence are also used to indicate the busy state of the 
associative memory.  The idea is that memory is only busy if it has to read/write to 
persistence, otherwise all the necessary data is cached and can be updated within the 
current clock cycle.  Therefore, the time it takes the memory to process a context is 
dependent on the population of the cache, and the bandwidth of the persistence entity. 
 
It is hard to make specific estimates of the performance of this design.  However, it is 
clear that performance is almost entirely dependent on the size of cache memory and the 
bandwidth to secondary persistence. The same is true of the software product, for which 
CPU power is almost irrelevant.  Saffron is memory intensive.  The ideal hardware 
system would support a processor-in-persistent-memory design, much like the brain, 
which merely activates – does not move – long-term memory into working memory.  The 
brain also has “clocks” of a sort and the basic operations described next are likely to also 
take place within one cycle, evaluating the entire current context in each cycle, regardless 
of context size. 
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Figure 21: Complete Schematic of General Interface 
 

3.3 Large Matrix Design 

3.3.1 Naïve Crossbar Architecture 
The first architectural implementation of the associative memory entity was done as a 
trivial matrix, including memory for a complete crossbar.  This implementation is trivial 
because it simply maps the two attribute atoms that co-occur into the corresponding cell 
of the matrix.  This makes observe as well as imagine very simple, since lookup only 
involves concatenating the attributes and accessing that piece of memory.  However, this 
design makes a huge trade off with storage requirements, in order to achieve this 
simplicity, since the storage must be large enough to accommodate the entire attribute 
space (N x N), even if only a handful of contexts are ever observed.  Nevertheless, the 
ability to quickly develop this basic architecture made it possible to focus on any 
necessary control and timing logic, both internally between persistence and memory 
components as well as externally with the test bench.  It also served as a verification tool 
to compare the output of more complicated architectures. 
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3.3.2 Large Matrix Architecture 
This architecture is based on the software model’s approach (the SaffronOne 
implementation).  The idea is to group the populated portions of the matrix into chunks, 
referred to as segments, which are then collected into large pieces, called blocks.  This is 
a far more efficient design, as only those co-occurrences that have been observed require 
storage space.  However, when the co-occurrences are observed, there must be sufficient 
logic to locate the appropriate block and/or segment, and update or create the segment 
structure.  For added efficiency, the data (counts) stored within this segment structure are 
represented using bit planes, in order to minimize the space used for each integer count. 
 
The Large Matrix presented numerous challenges to the novice hardware developer.  The 
first was how to build the segment structure to allow for efficient indexing and dynamic 
growth.  In software, this is done using the Java TreeSet data structure, which provides 
the convenience of a hash table (for random access lookup) as well as the order of a tree 
(for walking through the keys in some logical order, as opposed to ordered by hash code).  
While this data structure is backed by more primitive structures (sets and hash tables, 
which are then backed by lists and arrays), the effort to re-implement those data 
structures in VHDL seemed intimidating and, once again, not within the focus of this 
project. 
 
In an effort to gain most of the software model’s functionality, without spending weeks 
on re-implementing common data structures, the chosen approach was to use binary trees 
to handle the indexing of blocks and segments.  The details of the trees are discussed in 
the next section. 

3.3.3 Blocks, Segments, and Bit Planes 
As presented in the software design section, the segments contain the bit plane data 
representing the counts for some set of “nearby” attribute co-occurrences.   The VHDL 
implementation assumes only an existence matrix, which means the segment data is not a 
complex structure, but a fixed-size array of bits, since the single bit plane will never 
grow.  The segments are then indexed using a tree that is implemented with VHDL 
ACCESS types to RECORD structures.  There is also a tree of block indices, where each 
block index refers to some range of segment indices.  In this way, each node in the block 
tree is a pointer to the root of some segment tree.  The blocks and segments themselves 
are simply bit vectors and are kept either in a local cache or in the persistence entity’s 
array.  The structures only purpose is to quickly produce the cache/persistence memory 
address (indicated by the seg_index field) for a unique attribute pairing.  The VHDL code 
listing and resulting data structure for just the indices is depicted in Figures 22 and 23 
below. 
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type SegmentIndex; 
type SegmentIndexRef is ACCESS SegmentIndex; 
 
type SegmentIndex is RECORD 
 seg_addr : NATURAL; 
 seg_index : NATURAL; 
 leftchild, rightchild : SegmentIndexRef; 
end RECORD SegmentIndex; 
 
type BlockIndex; 
type BlockIndexRef is ACCESS BlockIndex; 
type BlockIndex is RECORD 
 min_seg_addr  : NATURAL; 
 max_seg_addr  : NATURAL; 
 block_index     : NATURAL; 
 next_free_index : INTEGER; 
 seg_root       : SegmentIndexRef; 
 leftchild,rightchild : BlockIndexRef; 
end RECORD BlockIndex; 

 
Figure 22: VHDL implementation of block and segment indices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Indexing structures for blocks and segments 
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While these “pointers” are quite powerful and give VHDL some high-level language 
characteristics, it may create challenges when moving to the synthesis phase.  Libraries 
and other existing VHDL solutions will be pursued to address this implementation detail. 
 
Finally, the structures from blocks to segments to the bit-plane data are defined in Figure 
24.   
 
    -- how many counts are in each segment 
    constant planar_data_width : natural := planar_map_width * planar_map_depth;  
       
    -- a Segment is defined as a vector of bits and holds the bit plane map and data 
    subtype SegmentStructure is STD_LOGIC_VECTOR(planar_data_width-1 downto 0); 
        
    -- how many segments can fit in one block, this number would likely be much larger 
    -- in a non-prototype implementation (eg, 4096) 
    constant segments_per_block : natural := 16; 
     
    -- a Block is defined as a vector of segments 
    type BlockType is ARRAY(0 to segments_per_block-1) of SegmentStructure; 
     
    -- memory holds maximum of 8 blocks 
    constant block_store_size : natural := 8; 
    -- an array of blocks is used as a cache, but could be entire memory 
    type BlockList is ARRAY(0 to block_store_size-1) of BlockType; 

 
Figure 24: VHDL structures for segments and blocks 
 
As described for the segment representation, each segment has one or more bit planes.  
However, this complication was excluded from this initial VHDL design such that each 
segment contains only one level of planar data.  The size of this data is variable length in 
the current product, where the number of data elements is given by the number of bits in 
the map.  But this is another complication of dynamic structure management, more 
difficult in hardware; therefore, the size of the planar data (planar_data_width) accounts 
for storing all possible data elements (planar_map_width * planar_map_depth). 
 

3.4 Small Matrix Design 

3.4.1 Naïve Small Matrix 
Other architectures were also prototyped, which was based on a SaffronOne software 
implementation of the Small Matrix design, since it tends to perform best when small 
numbers (under 10K) of unique attributes are observed.  The approach for the Small 
Matrix is to create a matrix that represents the rows and columns of only those attribute 
pairs that have been observed, instead of representing the entire matrix of possible 
attributes as at least virtual rows and columns. 
 
For the first hardware prototype, it was decided that deviating from the software design 
would allow for a “quick and dirty” prototype to be built using only two simple arrays.  
The first array would be a bit vector large enough to represent the maximum capacity 
matrix.  Knowing that the Small Matrix is only lower triangular, the storage vector 
needed to only be big enough to represent half of the NxN matrix.  The second array was 
a lookup table to locate the corresponding row or column index in the matrix for some 
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particular attribute value.  The array index would be the value for the row or column 
index in the matrix.  In other words, this second array would provide a mapping from the 
logical matrix that was accessed with row and column indices to the physical storage 
vector that was accessed with a single offset value.  The structures are depicted in Figure 
25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Data Structures for Naïve Small Matrix Design 
 
This naïve design does not use the segment structuring and bit planning.  It assumes only 
the “existence” single bit-plane, but a more complete representation of co-incidence 
counts would need to represent them individually as independent and complete counts 
(such as 16, 32, or 64 bit counters).  However, this design does show the translation table 
from atoms to matrix indices and how these index combinations can be used to compute 
an offset into the linear array of such counts. 

3.4.2 Small Matrix Using Segments 
With the simplified small matrix architecture complete, the move to the full-blown Small 
Matrix architecture could be made more easily.  The only change was to recognize the 
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space savings associated with storing the co-occurrences using the block, segment, and 
bit plane structures utilized in the current software implementation. 
There is a key advantage gained over the large matrix hardware implementation in that 
there is less metadata overhead.  On the other hand, since the small matrix is organized 
by observed attributes instead of possible attributes, there was no need for the various 
binary trees to manage the lookup and locate the appropriate block and segment for a 
particular co-occurrence.  Given only the offset into the triangular matrix, both of these 
could be computed directly without respect to the size of the matrix.  This huge gain was 
realized by the fact that the triangular matrix only grows in one dimension; new attributes 
to the matrix are simply added as another new row at the end of the triangle.  Compare 
this growth behavior with a Large Matrix, which would grow in two dimensions (i.e., the 
offset of some row/col cell would be a function of the size of the matrix).  This behavior 
is simpler than the growth complexity of a large matrix, and thus better suited to 
hardware especially for fixed capacity embedded systems.  In the interest of 
demonstrating such a complete matrix in memory, this design did not make use of the 
external off-chip storage device.   
 
Given a (row, column) logical co-occurrence index, the offset is computed as: 
 

offset = row * (row + 1) / 2  + column 
 
Additionally, the block and segment indices are easily found given the number of co-
occurrences a segment may hold (for a 4-bit planar map, it is 16) and the number of 
segments per block (the VHDL implementation chose a small number: 16).  So, the co-
occurrences per block is 256. 
 

block_index = offset / 256 
segment_index = (offset mod 256) / 16 

 
These formulas illustrate that the index is easily determined and does not change as the 
size of the matrix grows.  The only significant downside of the Small Matrix 
implementation is the additional computational time it will take for performing some 
types of queries, since the range of possible values for a goal key will be more 
fragmented than in the Large Matrix representation. 

3.5 Simulation Outputs and Waveforms 
In this section, we will provide discussion of the simulations and waveform outputs 
produced by the top-level system under the control of the test bench.  The VHDL 
simulation supports the following functions at this time: 

• Observe.  Ability to observe a context of attributes (in their atom form) into the 
existence matrix 

• Observed novelty and experience.  Indicate how the context compares to the 
stored matrix 

• Imagine. Ability to imagine the result for an attribute query, given some attribute 
category as the goal.  The imagine output is simply a list of counts for each 
possible attribute value. 
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3.5.1 File-Driven Test Bench 
In order to drive the test bench without having to create input waveforms or hard-code 
signal assignments using delay statements, the test bench reads its input from a simple 
text file and then drives the system using that data and synchronizing its stimulation using 
the global clock signal and the system’s busy flag.  The format of the file allows for the 
two operations (observe and imagine), along with the attribute inputs that make up the 
context.  The type of operation is specified in the first character, the number of attributes 
in the context is specified in the next number, followed by the attribute values for the 
context, and in the case of an imagine operation, the final number indicates the goal 
category for the query being executed.  An example input file is depicted in Figure 26. 
 
 
 
 

 
O 01 0002 0003 
O 01 000A 000C 
O 10 000B 000D 0010 
O 10 0002 0003 0001 
O 01 0001 0003 
I 01 0003 0002 00 
I 01 000D 0003 00 

 
 
 
 
Figure 26: Structure of testbench input file 
 
The test bench has 3 states: INIT, READ, and RUN.  The INIT state is the initial state 
and is used to enable the top-level system (raise the CE line).  Then, it moves into the 
READ state where it reads one line of this file into a buffer, where the operation code 
indicates what data to expect.  Once the input signals have been setup, the test bench 
enters the RUN state where it remains in a “busy wait” for the top-level system to 
complete the operation.  The test bench checks the BUSY signal after each clock cycle, 
and if it is low, it proceeds to the next input line, disabling the chip (lower CE line) when 
all lines have been processed.   This allows the implementing architecture to take as many 
(or as few) clock cycles as it needs to complete the operation without having to change 
the behavior of the test bench. 

3.5.2 Behavior of Memory System 
The behavioral model for the Large Matrix architecture of the top-level system is a bit 
more sophisticated.  A simplified state diagram is shown below, to illustrate the 
significant states that the system moves through to perform the requested operations.  
There are also two other states not shown (READ_STORE and FLUSH_CACHE) which 
are used to manage a local cache of block data within the component.  This most recently 
used (MRU) cache is managed by those two states to insure that any data necessary for 
computation is available there.   

Operation code character (O=Observe, I=Imagine) 
     Attribute selection bits (00=off, 01=2, 10=3, 11=4) 

Goal category for imagine (upper half of atom) 

Attribute Values in Atom Form (as hex) 
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For most states, returning to the IDLE state occurs when two conditions are met:  1) a 
CLK event occurs and 2) the state has finished processing its data (e.g., writing the 
memory for an observe operation, or producing results for an imagine operation).  These 
transitions are indicated by the CLK’ notation in Figure 27.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 27: Finite State Machine Diagram 
 

3.5.3 Simulation Waveforms for Observe 
Using the test bench to drive the top-level system, several waveforms were produced.  
The first waveform, in Figures 28 and 29, shows a series of 4 observe commands, 
demonstrating the ability to write to the memory, as well as providing experience and 
novelty outputs for each context. 
 
Focusing on the first boxed area (from 5 ns to 35 ns), the test bench has raised the CE line 
(not shown), so that the top-level system has entered the “idle” state.  Then, the first 
context input is set up, containing 2 attributes (indicated by an AttrSel signal of “01”), 
with attribute atom values of 0x0002 and 0x0003 on AttrBus0 and AttrBus1.  After the 
observe is complete, the experience and novelty lines indicate how many attribute pairs in 
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the context were previously observed (experience) and how many pairs were new to the 
memory (novelty).  With a context of size 2, there is only one unique pair, and it is new, 
so the lines are experience = 0 and novelty = 1. 
 
 

 
Figure 28: Waveform of Observe (part 1 of 2) 
 
 

 

Figure 29: Waveform for Observe (part 2 of 2) 
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The next observe occurs with another context of size 2, this time with values 0x000A and 
0x000C.  Again, since these values are different from the previous, the same experience 
and novelty scores are produced. 
 
Moving on to the second box (from 70 ns to 90 ns), the test bench loads a context of size 
3.  For a context of size 3, there are 3 unique combinations (in general, for a context of 
size n, there are n * (n-1) / 2 unique pairs).  Once again, these attribute values are all 
different from the previous 4 values, so the experience score is 0 and novelty is 3.  At this 
point, there should be 7 counts in our associative memory (2 + 2 + 3). 
Continuing with the simulation, the next context is also of size 3, but this time it contains 
2 attribute values that have been seen before (0x0002 and 0x0003) along with a 3rd new 
attribute.  The result is there are 2 new combinations, and 1 previously observed; the 
experience and novelty output lines reflect this. 
 
Finally, a context of size 2 is observed.  This is the same context that was observed at 40 
ns, but the values have been reversed on the buses.  However, attribute pairings are order-
independent, so the result is a 0 for novelty and a 1 for experience. 

3.5.4 Simulation Waveforms for Attribute Query 
The next simulation, in Figures 30 and 31, shows the ability to recall previously observed 
attributes.  In this case, the context is not to be observed, but used to “remind” the 
associative memory of other attributes that would have been seen with the given input 
context. 
 
This simulation used the same series of input data as the previous simulation, but those 
observations are not repeated.  However, this simulation did include an additional 
observation of a context of attributes (0x0001 and 0x0003). 
 
For the imagine call, the test bench not only sets up a context of size 2 (0x0003 and 
0x0002), but it also provides the upper byte of the goal bus, which defines the category of 
the desired query result.  So, the result for this query should be for attributes that would 
have been seen with either or both of the input attributes AND whose upper byte 
(attribute category) is 0x00.  Notice that the test bench releases (sets to Z) the lower byte 
of the goal bus, so that the associative memory can assign its value.  This was done to not 
only optimize the I/O lines, but also provides a convenient way to enforce that the 
attribute value returned has the corresponding category, as that byte can not be 
overwritten. 
 
After the input values are set up, the top-level system moves into the imagine_attr_query 
state.  In this state, the possible values are found by doing lookups for the input attributes 
and matching co-occurrences whose top byte satisfies the goal category.  From our 
previous simulation, we know that 0x0002 and 0x0003 were observed once as a context 
of 2, and again with a context of 3, where the 3rd attribute was 0x0001.  Additionally, the 
extra context was observed of 0x0001 and 0x0003 as mentioned earlier.  So, the 
associative memory recalls those values, and discards the 0x0002 and 0x0003 from the 
results, since they are part of the input context. 
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Figure 30: Waveform for Imagine (part 1 of 2) 
 
 

 
 
Figure 31: Waveform for Imagine (part 2 of 2) 
 
Once the set of results has been found, the system moves into the query_results state to 
output the set of results, one per clock cycle.  In this case, there is only one attribute 
displayed (0x0001) before returning to the idle state.  Notice how the BUSY line was 
raised when the imagine_attr_query state was entered, and not lowered until the results 
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had been displayed.  As discussed earlier, it is this BUSY line that indicates to the test 
bench when to proceed with the next operation. 
 
The next operation for this simulation was to perform a query using two different 
attributes, 0x000D and 0x0003, as shown above.  While these attributes were never 
observed as part of the same context, they were observed with many different contexts.  
As a result, when this query is given to the system, it takes 3 clock cycles to display all of 
the possible results (0x0010, 0x0001, and 0x0002) before returning to the idle state.  It 
should be noted that within the VHDL model, the number of times these attributes were 
seen is also available, and could be used to order the results or provide additional output, 
however, at this time the system simply returns those attributes that meet the criteria of 
the context and goal category. 

3.6 Additional Considerations 
This work has influenced Saffron’s software design, which will also prepare for the 
replacement of SaffronOne software engine with a hardware appliance, based on the 
same entity interface and core functionality.  However, there are some remaining 
differences and concerns: 

• Associative counts. The VHDL design includes only one “existence” bit plane.  
A full implementation will require multi-plane representation and dynamics.  For 
instance, as new contexts are observed, a form of adder is required that 
increments the bits, but at a planar data level.  In other words, rather than add and 
carry bits for one counter, adding and carrying can be done for entire sub-
segments at a time. 

• Observation policies.  As part of Saffron’s new distributed design, the raw count 
layer has been separated from the calculator or inferencing level.  For example, 
Bayesian-like, entropy-based, and many other computations are possible once 
given a subset of matrix counts.  These are too numerous and flexible to 
implement and over-bind into a general building block hardware, but some of 
these computations are very fundamental and can be included in the memory 
level, especially for controlling the memory.  For example, Saffron includes a 
number of “observation policies”.  One called “NEW_ONLY” controls 
observation so that only those contexts that add new information will cause the 
counts to actually change.  It is like an attentional filter and is based on the use of 
the novelty measure.  Only when the context contains some measure of novelty 
does the memory include the context.  This also limits the maximum count 
strength and is useful for ensured capacity planning that would be required of 
embedded systems.  For an application example, engine steady states have been 
modeled with Saffron for use in prognostics; the memory includes “normal” 
signatures and alerts any novelties when the engine dynamics move to an 
unknown regime. 

• Separate operations.  Saffron’s distributed design has also split the operations of 
observation and imagining into separate services.  While the current design 
includes both operation codes within a single entity, continued pursuit of a 
hardware appliance might also consider such separation into two different 
implementations.  In other words, one implementation would be devoted only to 
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observation of contexts into the memories.  This is reasonable in that different 
applications will have higher demands and need for hardware acceleration for one 
operation or the others.  For example, publish/subscribe architectures need to 
imagine and route at very high rates.  In contrast, indexing architectures – like 
Saffron’s major product – are much more demanding of observation speeds.  
Follow on work is planned to focus on acceleration of observation rates, which 
plague most of Saffron’s customers.  For example, some customers have millions 
of documents a day that need to be processed in Saffron memory-based modeling. 

 
Overall, the very dynamic nature of the memory representation will likely need to be re-
evaluated and re-designed for hardware implementation.  These VHDL designs serve to 
demonstrate the design and provide the component structures, functions, and processes.  
But as will be further discussed in Accomplishments and Lessons, the overall design and 
specific data structures are likely to change as we move from VHDL behavioral modeling 
to actual implementation. 
 

4. Advanced Building Block Exploration 

4.1 Synaptic Growth 
It cannot be overstated about how much is known about neural systems and also how 
little is known at the same time.  Therefore, all of the following investigations are very 
speculative.  If such speculations are taken with a grain of salt, many ideas about neural 
function can be profitable in understanding possible mechanisms of the neural device and 
how we can make artificial devices in some similar ways. 
 
The history and Artificial Intelligence and Neural Networks was acrimonious, calling 
each other “artifactual intelligence” and “neural muddlers”, respectively.  Our approach 
is in the middle, not ignoring the neuroscience but not intending to be a complete model 
of actual neurons.  Saffron Technology is not explicitly committed to the implementation 
of realistic neural systems.  As a business, its mission is to solving very hard problems as 
a matter of engineering – but inspired by real neuro-cognitive systems.  Because of this, 
our neural inspirations falls short of a true neural theory, but approximations can also 
drive the discovery of new algorithms.  Our exploration into advanced ideas for a neural 
building block is in this philosophy. 
 
Computational and structural understanding of the neuron at large is very speculative 
even among neural experts.  However, when limited to the dynamics of a single synapse 
as the connection between one neuron and another, very much is known and there is 
enormous consensus that synaptic modification underlies the mechanism of learning and 
memory.  As shown in Figure 32, many different mechanisms seem to be involved in 
synaptic long-term potentiation (LTP) of synaptic efficacy. 
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Figure 32: Synaptic changes in long-term potentiation as the basis for learning 
 
Without getting into all the physiological details, it can be clearly seen that the total 
amount of resources, from receptors to entire spine multiplication, underlies the change in 
synaptic strength.  If the synapse is the seat of associative strength, then such changes are 
akin to increasing the associative count within coincidence matrices.   
 
This is relevant to our representation of bit-plane growth.  At least in philosophy, the idea 
is to grow the physical basis for the associative counts as needed (“on the fly”).  Small 
counts require small resources.  Larger counts require more resources.  The neural device 
is able to control the nano-level resources of each and every synapse for each and every 
associative count.  Current software and hardware do not allow such fine grained 
manipulation of independent bits, but at least within the multi-word scope of each 
separate segment, Saffron grows local areas of the matrix and assumes the physical costs 
of growth only where needed to represent larger areas. 

4.1 Coincidence Detection 
Beyond individual synaptic growth between two neurons, nobody knows how synapses 
act together to produce relevant cognitive functions.  As introduced at the beginning of 
this report, neurons show highly nonlinear behavior but appear to be more dominantly 
linear in structure.  Saffron pursues such understanding as a matter of compression and 
partitioning.  In recent years, this understanding in real neurons is being pursued as a 
matter of nonlinear “coincidence detection” within the neuron.  But even as late as the 
last decade, within-neuron nonlinear models have been rare. 
 
The rebirth of interest in neural network modeling in the mid 1980s showed a great deal 
of practicality, at least in contrast to the very limited success of traditional AI.  However, 
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while the progress of “connectionism” assumed greater emulation of neurons, these 
assumptions were weak and limiting.  As for many decades of neuro-computational 
modeling by the Parallel Distributed Processing (PDP) school, most models were based 
on a linear summation and threshold device as the fundamental unit.   
 
Associative memories also suffered these same weak assumptions.  For example, Figure 
33 (Hassoun, 1993) shows how each “neuron” is merely a summator of its 
interconnections.  Such associative memories are non-linear in that the interconnections 
are modeled as a complete crossbar, connecting every neuron to every other.  
Unfortunately, hardware implementations must then implement a complete crossbar, 
which doesn’t scale well. 
 
 For real neurobiologists, nothing could be further from the truth.  Rather than a simple 
linear summation and threshold device, neurons are known to be highly non-linear.  The 
complex synaptic and membrane functions might allow even small patches of a neuron to 
be Boolean-complete.  The most recent investigations of real neural computation suggest 
that coincidence detection – the interconnectivity seen in the figure above – might take 
place within a single dendrite.  In fact, Jeff Hawkins’ recent theory about memory-based 
prediction requires “coincidence detection in thin dendrites” within neocortical neurons 
(Hawkins, 2004).  On the other hand, Hawkins does not propose a specific mechanism 
for such coincidence detection and nobody knows exactly how such a function is 
computed.   

          
 
Figure 33: Historical examples of crossbar for associative memory hardware 
 
In contrast to such crossbars, Figure 34 shows some progress in beginning to speculate 
about such neural mechanisms. 
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Figure 34: Recent ideas for coincidence detection within dendrites and neurons 
 
The figure on the left (Hausser and Mel, 2003) illustrates how some researchers are 
beginning to view the neuron as a network within itself.  In this case, the neuron is cast as 
a multi-layer perceptron (also known as back-propagation network).  Such models were 
made popular in the 1980’s by assuming that each neuron was a summation-threshold 
device and that back-propagation learning methods acted across a network of simply, 
linear neurons.  Instead, this figure shows how the entire nonlinear network might be 
implemented within a single neuron.  In this view, coincidence occurs at the intersection 
of inputs on the dendritic tree.  This is certainly possible, but back-propagation as the 
specific method is a very poor computation.  It is sensitive to initial conditions, slow to 
learn, subject to over-fitting, and more.  In contrast, we and others believe that the neuron 
is a memory and that coincidence detection should be more like the incremental and rapid 
update of coincidence weights – not slow learning as this model suggests. 
 
The second figure (Mehta, 2004) is more physiologically realistic.  It assumes that 
synaptic co-locations are more effective in triggering LTP, which is the known basis of 
learning and memory.  LTP is also known to be rapid and possible with even just one co-
incidence of appropriate inputs.  On the other hand, this model does not propose any 
particular cognitive function of such inputs and their coincidences.  While it does show 
how two co-located inputs can be distinguished from two other inputs, it does not explain 
how any arbitrary pair of inputs to the dendrite can fire together and be stored as a 
coincidence.  This is not a general purpose associative device.  While we are making 
progress on understanding some basic mechanisms of the nonlinear neuron, we do not yet 
understand the overall computation and algorithm at a higher level.   
 
Saffron’s methods of compression and partitioning described above demonstrate a 
number of compression methods, but these are not yet the Holy Grail we believe is still 
available if we had better understanding of neurons.  In addition to bit-planes, space-
filling curves, sparse segmentation, etc, Saffron has a number of other methods which 
have been used and explored.  The current work continues this exploration of how 
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coincidence detections – the fundamental unit of associative memories – can be further 
and further compressed into more dominantly linear structures. 
 
Also, in moving from software to hardware, this new work included the exploration of 
how the neural device might benefit from additional computation and parallelism beyond 
Saffron’s current software implementation.  In might be that efficient coincident 
detection requires hardware.  Neurons are devices and the required computation might 
also require device-level properties for message-passing and efficient parallelism, for 
example.   
 
The following elements were explored as additional computations for compression and 
parallelism in such devices: 

• Projection sorting.  We have explored some interesting properties of matrix 
projections, which in some cases show how a set of linear set of sorted projections 
can completely represent the elements of the matrix.  Furthermore, these special 
cases show how message-passing on a purely linear structure could support 
coincidence detection on thin dendrites. Whether perfectly linear or not within 
thin dendrites, we further investigate how different forms of projection sorting can 
lead to improved packing of matrix elements and, hence, improve compression. 

• Hierarchical grouping. We also explored how hierarchical structuring further 
improves compression.  Whereas sorting is assumed to take place within a 
dendrite structure, a hierarchical tree structure might be akin to the organization 
of dendrites with each other.  Again, whether these speculations about neurons are 
valid or not, we demonstrate how the methods improve compression as might be 
implemented in real neurons and artificial devices. 

 
For now, we assume that these possibilities are limited to the Small Matrix.  For instance, 
the Large Matrix uses a fixed indexing scheme so that values within each attribute are 
grouped together, while Small Matrix uses a translation table from external indexes to 
specific line locations into the matrix.  The order of elements in the translation table is 
completely arbitrary and is usually capricious; new line codes are simply added to the 
matrix as they arrive from the data order.  Because the order of the translation table is a 
free variable, different sort orders are possible without loss of information.  Our approach 
to studying such sorting and how it might be implemented included mathematical 
analysis and testing within Saffron’s software product in order to leverage real data and 
our current representations.  Based on these results, hardware considerations are also 
discussed for how to capitalize on these results in subsequent work. 

4.2 Strength Sorting 
Saffron has been investigating an intriguing property of matrices since its inception:  how 
can matrix projections be used to represent matrix values.  Matrix projections are used in 
digital tomography to infer internal values of structures when the internal structure is 
inaccessible.  For instance in medical imaging, CAT (Computer-Aided Tomography) 
reads the 1D projections of X-rays at various angles and combines them into an image of 
2D complex internal structure.  The application of tomography to associative memories is 
different than medical imaging; digital tomography begins with projections and tries to 
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infer internal structure, while memory compression begins with the matrix and tries to 
represent it by projections.  But the common idea is to represent and then read complex 
2D internal structures with 1D projections. 
 
Digital tomography uses a method (Herman and Kuba, 1999) for sorting matrix 
projections.  The method sorts the projections for the rows and columns as seen in Figure 
35 and 36 below.  This tends to pack bits into the top left corner (by historical 
convention).   
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Figure 35:  Arbitrary matrix and its row and column  

1134456777789

11

112

112

11111117

111111118

111111118

111111118

1111111111111

111111111111113

1134456777789

11

112

112

11111117

111111118

111111118

111111118

1111111111111

111111111111113

 
 
Figure 36:  Digital tomography and projection sorting 
 
Then, methods can test these projection orders for the property of “maximality”, defined 
as that part of the sorted matrix where the projections can serve as invariant, zero-offset 
run lengths.  To the degree that the matrix is maximal, the projections can be used to read 
the matrix as described in Figure 37.  As in the next figure of a binary matrix, the 
association between i and j is ON iff the projection of i is less that the index of j.  In other 



 

 45

words, the projection can be viewed as the i run length of 1s (from the zero j index) so 
that any j index within this run length must have an association with i.  
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Figure 37: Read operation on projections and sort order of maximal matrix 
 
Toward Saffron’s original questions about possible compression in neurons and 
Hawkins’ prediction that coincidence detection must occur in thin dendrites, such 
methods are intriguing in that a linear structure can compute the coincidence (or not) 
between two indices – at least for maximal matrices.  If synaptic strength represents the 
projection strength, then they implicitly represent a number of associative counts, not just 
one association.  The interaction of these projection weights represents the entire matrix. 
 
However, maximality is very rarely found to be true for any arbitrary matrix.  Such pure 
linearity of the representation should not be assumed, but the effects of sorting toward 
some form of compression seem clear.  Sorting tends to drive 1s to a corner and increases 
the property of consecutive 1s. 
 
Many schemes are now being widely explored and used for matrix-based indexing 
methods, including sorting to compress such matrices.  For example, Goharian and others 
(2003) report the trend away from inverted indexing due to complexities of updating and 
parallelization, in favor of sparse matrix algorithms. These approaches tend to focus on 
Term X Document matrices.  However, associative matrices are more specific types of 
matrices in that they are auto-associative.  Beyond Term X Document matrices, Saffron 
also includes Term X Term matrices in which the row elements are the same as the 
column elements (although the Term X Document sub-matrix is also included).  In other 
words, Saffron matrices are symmetrical or triangular matrices, and thus, the sort of the 
rows should be the same as the sort of the columns.  As such, the measure of any term’s 
projection is the sum of both its row and column projections from the triangular form as  
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its total associative strength.  Terms are sorted according to this total associative strength 
resulting in one new sort order for both rows and columns.  We call this “strength” 
sorting. 
 
This method was tested in software by extending the Saffron product to include and 
measure the effects of such sorting.  The effectiveness of such methods is likely to be 
very data-dependent.  The question is whether or not such methods can help further 
compress the actual matrices produced by Saffron applications.  For these tests, a 
standard TREC database, the entire year of Wall Street Journal articles from 1987, was 
ingested into associative memories.  Overall, this generated more than 26,000 matrices.  
The persistence of the memories both with and without sorting was measured and is 
reported here.  The following figure shows one matrix (City:Tampa) with and without the 
Row/Col sort of total associative strength.  Figure 38 presents the matrix contents as will 
as the total number of run lengths.   Run length representation was used as a close proxy 
to the segment and planning representation.  In both cases, few resources are required 
when bits are packed closer together, but run length encoding was easier to implement 
and measure for such initial explorations. 
 
Sorting is clearly seen to increase the run-lengths and to even segregate the terms into 
local cliques of runs along the diagonal.  It also shows a group of strongest terms in the 
matrix that are associated with many more terms.  On inspection, these “terms” are 
actually the document references.  They have stronger total strengths because they 
represent all the terms within them.  But whether term-term or term-document, all 
associations were better compressed (and segregated) by the sorting.  
  

 
 
Figure 38: Matrix views and run lengths before and after strength sorting 
 
Resorting the matrices is relatively expensive and inefficient with software.  These tests 
were made by reading Saffron generated matrices from hard-drive persistence and 
rebuilding the entire matrix back to the hard-drive.  In real implementation, Small 
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Matrices would be entirely within cache memory and could be rapidly sorted and 
streamed to the hard-drive in the new order if implemented in hardware.  To be clear, the 
strength projections can also be persisted, updated, and sorted independent of the 
matrices themselves.  After and then given such an independent projection sort, the 
“copy” from cache to storage can use the old and new sort orders to actually sort the 
matrix elements. 
 
Small Matrices up to 10K attributes can fit entirely in cache memory and are streamed 
into and out of memory, but the computation cost of this experiment allowed us to only 
sort and measure the effects on matrices up to 500 attributes.   Across all 26,000 matrices 
generated from the WSJ data, sorting was applied to over 2,000 matrices below this size.   
 
As in Figure 39, strength sorting was found to compress these matrices by more than 50% 
overall.  This shows the distribution of matrices from 60 to 500 attributes and how they 
were compressed with strength sorting.  Compression is measured as sorted/unsorted run 
length encodings.  No matrices are shown below 60 attributes because such small sizes 
tend to represent only 1 or 2 observations (of around 30 attributes each) which causes the 
sort order to already arrange the associations into highly compressed cliques.  Sorting 
was found to have no effect on such already well-packed matrices.  Further testing is 
needed to see how such compression holds or not up to the 10K attribute limit of Small 
Matrices.   
 
 

 
 
Figure 39: Strength sorting of Small Matrices 
 
Also, the measure of compression was run length encoding.  In other words, rather than 
the segment, bit-plane, and bit mapping functions now used in Saffron, we simply 
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measured the number of consecutive 1s run that existed before and after sorting.  Run 
length encoding was easier to compute for such initial explorations, but we believe the 
same results will hold for our actual method.  To the degree that bits are better packed by 
sorting, fewer segments and smaller maps will also be required to cover them.  Disparate 
bits will tend to fall more into the same segments and sub-segments.  However, using 
hardware in future test of larger matrices should also ensure that the results hold for such 
other representations. 
 
The sorted matrix also shows a tendency for attributes to form affinity cliques of 
associations near the diagonal.  This appears to be a side-effect of strength sorting of an 
auto-associative matrix.  However, we also tested another form of sorting that more 
directly computes such affinity. 

4.3 Affinity Sorting 
The importance of large matrix compression has also been expressed by Johnson and 
others (2004).   They further demonstrate that the sorting problem is akin to the Traveling 
Salesman Problem (TSP).  They argue that each term’s binary association vector can be 
compared to another term’s association vector.  The distance between these bit vectors 
can be measured as their Hamming distance.  As a matter of compression, they describe 
how two terms with similar association vectors can be placed next to each other, and 
rather than have two independent bits, their collocation creates a single two-bit run.  As 
similar bit vectors are placed next to each other in general, run lengths are also increased 
in general.  However, since all the term similarities must be reduced to a single sort order, 
the problem becomes a matter of finding a single shortest “tour” through the terms, 
exactly like a TSP.  This is demonstrated in Figure 40. 
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Figure 40: Matrix sorting as Traveling Sales Problem 
 
Each term’s binary associations to other terms are cast as its bit vector.  These terms then 
have a location in Hamming space where distances between terms can be defined as their 
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Hamming distances.  For example, if A’s bit vector of associations is 01001111 and B’s 
vector is 01001011, then they are only 1 bit away from each other.  All such point to 
point distances can be computed and stored in a distance matrix (although only the AB, 
AC, and BC distances are shown here).  Given these inter-term distances in Hamming 
space, the tour that minimizes the total route distance also maximized run length 
compression.  For example, if A is followed by B in the row order, then all but one bit in 
A’s vector is included in the (short) run through B as well when looking down each 
column. 
 
The problem with this approach is that the TSP is NP-complete.  This is to be expected as 
a method of compressing matrices because CONSEQUTIVE ONES and MATRIX 
COMPRESSION are also known to be NP-complete.  Even in computing the term-term 
similarity matrix, this matrix must contain Hamming distances as integer values whereas 
the original data is simply a binary matrix!  Aside from the combinatoric complexity of 
finding the optimal tour, the mere size of the distance matrix will be much larger and less 
sparse than the association matrix. 
 
Instead, Saffron has patented the use of statistical projections of the matrix, called Prior 
and Next counts.  Given any particular order of terms, each term’s associations to others 
can be summarized as the number of associations before it and the number of associations 
to other terms after it.  Numerically, Prior-Next counts are the same as Row-Col counts, 
but only in the case of triangular, auto-associative matrices.  But the semantics of “prior” 
and “next” also better measures the strength and direction of affinity for each term to the 
other terms. 
 
In strength sorting, the projection strength of each term included all its associations to the 
other terms.  For example in Figure 41, E’s strength is 5 associations while D’s strength 
is 3.    These total associative strengths are not affected by the order of the terms.  On the 
other hand, prior-next projections keep two directional strengths of association and are 
effected by the sort order.  In this case of the unsorted matrix on the left, E is at the top of 
the order and so has no prior associations, with all 5 being to terms that are next in the 
order.  As another case, D has one prior association (to E) and two next associations (to F 
and C).  A similar terminology is used in the methods of topological sorting, which use 
“predecessor” and “successor” counts.  However, the methods of topological sorting 
apply to directed acyclic graphs, not the bidirectional weights of an associative matrix 
that do not allow topological sort.  Our definitions of prior and next are not given by the 
directed arcs but are defined by the arbitrary order of terms, which is a free variable. 
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Figure 41: Prior-Next counts as statistical affinity of terms to each other 
 
 
Prior-next sorting is modeled after bubble sort.  Pseudo-code for N terms is as follows: 
 
            for (j = 0;  j < N-1;  j++) { 
                for ( k = j;  k > -1;  k--) { 
                    if ( shouldSwap( k,  k + 1) ) swap(k, k + 1); 
                } 
            } 
 
The decision whether to swap vertices k and k+1 is made by shouldSwap( k,  k + 1).  
Vertex k is to the left of k+1; intuitively, we will choose to swap if the net force on k to 
the right exceeds the net force on k+1 to the right, i.e., if  

 
next(k)-prior(k) > next(k+1)-prior(k+1). 

 
For example, swapping E and A above simply swaps their given prior-next counts.  After 
the swap, E still has no prior associations (it has no association to A, now before it) and 
all 5 associations are to terms after it.   
 
On the other hand, the swap D with C must change the prior-next projections of each 
because they are associated to each other.  Because the DC association is after D and 
before C – before the sort – the direction projections will change after the sort.  
Therefore, shouldSwap(k, k +1) needs to be modified to take into account the weight (w) 
between k to k+1.  The test then becomes 

 
(next(k) – w) - prior(k)  > next(k+1) – (prior(k+1) - w) 

 
so that in effect, the weight between the two terms does not effect their affinity to other 
terms across each other.  If they still do swap, then the weight between them must be 
accounted as moving from prior-to-next and next-to-prior, respectively.  For example, C 
winds up with 2 prior and 1 next. 
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In general, these measures of affinity and swapping can be seen as a statistical approach 
to the TSP.  Rather than compute the exact Hamming distance bit-by-bit between all pairs 
of term bit vectors, prior-next counts and sorting represents the forces and tendencies for 
such similar terms to migrate together. 
 
As with the Row-Col total strength sort, this method was implemented in Saffron’s 
product for testing against the actual matrices produced by WSJ data.  Results are shown 
in the Figures 42 and 43. 
 

 
 
Figure 42: Matrix views and run lengths before and after affinity sorting 
 
 

 
 
Figure 43: Affinity sorting of Small Matrices 
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Results are similar to strength sorting although better – greater than 60% compression.  
Direct computation of affinity seems to draw bits together into runs better than strength 
sorting, but affinity sorting is also more complex and expensive.  Strength sorting 
requires only one total projection strength, which is constant through the sorting process.  
Affinity sorting requires two directional projections, which change in value as they are 
swapped.   
 
Affinity sorting is slightly more complex than simple strength sorting but is still much 
less expensive than more well known Sparse Matrix Ordering methods.  For instance 
Cholesky factoring and Cuthill-McKee orderings are used to maximize the “fill” of 1s 
near the matrix diagonal.  Such thin bandwidth matrices are very important to linear 
programming for example.  While such methods are tangentially relevant here and 
subject to a great amount of investigation in computer science, they are not suggested for 
a number of reasons.  First, they are very computationally expensive, whereas we desire a 
fast and simple method to keep reapplying to changing associative matrices.  Second, 
they work well in packing bits toward the diagonal, which is a common property for the 
matrix problems they seek to support, but “natural” associative matrices such as in 
information retrieval are not as likely to be as “thin and long”.  For example, even with 
light loading of City:Tampa, while sorting drives some tendencies toward the diagonal, 
the inter-relationships between terms are also more complex than in linear programming. 
 
Moreover, a more complete understanding of neural structure and further attempts at 
compression – hardware or wetware – needs to also be included. 

4.4 Hierarchical Sharing  
Figure 44 shows how neural dendrites are dominantly linear and “thin” but are also 
arranged in a branching tree of linear segments.  The figure on the left shows an entire 
Pyramidal cell of the neocortex.  The figure of the right shows the order of dendritic 
branching within such neurons. 
 

     
 
Figure 44: Dendritic structure of neurons as linear segments arranged in a tree 
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The goal of using associative matrix projections and sorting them was to approximate the 
linearity of maximal matrices in which a vast number of associations can be represented 
with only their projections.  The intention was to understand how a linear structure such 
as the projections of maximal matrices can compute “coincidence detection in thin 
dendrites” as hypothesized by Hawkins and investigated by others.  Clearly, the natural 
matrices generated by Saffron are not maximal and cannot be reduced to one zero-offset 
run length for each term as required for maximality.  However, real neurons also seem to 
partition the matrix into an overall tree.  We investigated additional methods to see how 
some form of hierarchical decomposition might also effect compression. 
 
Many other decompositions are also possible, but given the good results of sorting and 
the natural grouping of affinities by both sorting methods, we decided to use such affinity 
as the basis for the hierarchy.  Figure 45 shows the construction of second order segments 
that account for the commonalities of nearest-neighbor terms.  Given two bit vectors that 
are more or less similar to each other, common bits are promoted up the hierarchy, 
leaving only the bits unique to each individual term. 
 
For initial investigation of this method, we limited the hierarchy to only a first level of 
combinations.  As with hierarchical segmentation generally, this process can be repeated; 
first level combinations can then themselves be combined at the next level.  However, 
before committing to added complexity, we simply wanted to test whether either or both 
of the sorting orders could be the basis for pairing and abstraction of common counts for 
improved compression – even if applied in only one iteration. 
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Figure 45: Hierarchical separation of common counts 
 
 



 

 54

Figures 46 and 47 show the compression results of hierarchical sharing based on both 
strength sorting and affinity sorting. 
 

 
Figure 46: Strength sorting and hierarchical grouping 
 

 
Figure 47: Affinity sorting and hierarchical grouping 
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In both cases of strength sorting and affinity sorting, hierarchical sharing across nearest 
neighbors improved the compression over sorting along.  The trend lines for all 4 cases 
are shown in Figure 48. 
 

 
 
Figure 48: Comparison of all sorting (solid line) and sharing (dotted line) cases 
 
Affinity sorting appears better than strength sorting and hierarchical sharing appears to 
improve both, respectively.  The hierarchical sharing method also continues to fulfill the 
requirements of a lossless and incremental memory.  For example, the individual term 
segments remain as the places where new associations are observed.  The hierarchy is 
irrelevant to how new contexts are written into the memory.  The consolidation of shared 
counts can occur at any time other than the time that they are observed.  This is resonant 
with the idea that associative changes might be rapid, but that consolidation can take 
more time and occur later (after learning per se, perhaps as a function of sleep) . 

4.5 Larger Scale 
However, our results are extremely tentative because of the restricted range of Small 
Matrix sizes that were measured.  As a last effort of this work, both forms of sorting and 
hierarchical sharing were applied to a sample of larger Small Matrices.  While the 
method used for these experiments is still extreme inefficient (reading and resorting the 
matrices from disk) and we would like to know more about even larger matrices, this 
final experiment sampled matrices up to 2500 attributes.   
 
Figure 49 shows the continuation of the compression effects.  Affinity sorting continued 
to be the better method, and hierarchical sharing continues its additional improvement.  
Therefore, we have selected only affinity sorting for going forward and show only these 
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results.  (Matrices smaller than 300 were excluded in order to determine the later sections 
of the scaling curve.) 
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Figure 49: Larger sampling of affinity sorting (red) and sharing (green) methods 
 
The regression curves are now polynomial.  However, given the degrees of freedom in 
polynomials and the limited sample size at the larger attribute numbers, it is unclear 
whether the tail of the curve is asymptote or reversing.  It is entirely possible that the 
compression effects will become even greater as the matrices grow beyond 2500 
attributes and the matrices become sparser, but this is extremely uncertain without more 
data.  Subsequent work using hardware acceleration to more efficiently explore much 
larger dimensions will better determine whether this trend persists or not.  If so, then 
these results could have more impact on the overall scalability of SaffronOne.  For 
instance, empirical results suggest that transition to a Large Matrix should occur at 10K 
attributes.  If resorting and sharing has significant compression effects at the Small 
Matrix approaches 10K, then this switch point may be pushed out to 20K-40K attributes 
perhaps. 
 
Further research and develop of the hierarchical sharing method is also likely to improve 
the results.  For instance, as in a full tree, the method can be recursively applied to the 
hierarchical groupings adding (perhaps) another 10-20% or greater size reduction.  To do 
this, a cost/benefit decision method should also be included.  For example, even if some 
bits can be shared in the hierarchy it might not be more efficient to do so for specific 
branch points, depending on the case.  More like real neurons that are tree-like but not 
complete trees, it is likely that the efficacy of sharing will halt the recursion at various 
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points, creating a sparser tree.  This cost/benefit decision rule is not yet applied to even 
the first order sharing; therefore, the compression benefits now cited are likely to be an 
underestimate.  The shared hierarchy was formed and then measured in total, whether 
more efficient or not for each decision point.  Future results should be even better. 
 
Sorting and sharing seem profitable to continue and improve.  Saffron is a memory-
intensive application and any reduction of footprint is beneficial.  Not only do such 
compressions decrease the precious cache requirements for resident matrices, it also 
decreases the overall persistent requirement by half.  Moreover, smaller matrices will also 
improve time performance in both allowing more matrices in a given cache and in better 
transfer of matrices through the I/O bottleneck.  As a general rule, Saffron’s concerns 
about compression have benefited the more critical issues of response time rather than 
footprint per se.  Such accomplishments will be pursued in both our software product and 
in subsequent hardware efforts. 

4.6 Hardware Considerations 

4.6.1 Neuromorphic Chips 
As evidenced in the latest issue of Scientific American and the article entitled, 
“Neuormorphic Microchips” (Boahen, 2005), research on neural hardware is active and 
popular.  This article also discusses self-organization by the swapping of “softwires”.  As 
seen in Figure 50, the map from external input in ganglion cells is modified by activity.  
Given a random initial wiring, the wiring to tectal cells moves closer to its source of 
stimulation so that internal maps come closer to the external order. 
 
 

 
 
Figure 50: Self-organization of receptor map based on swapping of “softwires” 
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However, such self-organization is more typical of receptive fields and is based on 
gradual, developmental processes.  This is different from our sorting in both method and 
purpose.  This process is slow and highly iterative.  Self-organizing maps are very likely 
true of real neural development, but it is a slow developmental process, not a fast 
memory consolidation.  We prefer a more instant sorting function based on projections, 
but such general principles of self-organization are very similar.  Other neuromorphic 
research such as in hardware-based “softwire” will be informative to future 
implementations of the sorting methods. 
 
The existence and speed of neuromorphic change in real neurons is still controversial.  
The classic doctrine is that such self-organization occurs during development but not in 
adulthood.  Learning might take place as a matter of local change in synaptic strength, 
but synaptic movement, new synapse formation, and dendritic branching changes were 
thought impossible.  Recent evidence suggests that neuromorphic changes also occur in 
the adult.  For instance, new synapses have been observed following LTP by minutes to 
hours (Lamprecht and LeDoux, 2004).  This is relevant to the scheduling of memory 
consolidation.  The associative counts are updated instantly, but sorting can be a delayed 
as a secondary process of consolidation.  For instance, a Small Matrix can reside in cache 
memory and rapidly observe a number of new contexts.  When saved to persistent storage 
at some arbitrary later time, this is when it can be resorted as a matter of consolidation. 
 
The hesitancy to believe in adult neuromorphics has been due to lack of empirical 
evidence, which has been due to the lack of neuranatomical techniques to generate such 
evidence.  However, as shown in Figure 51, new microscopic methods are allowing 
neuroscientists to see and measure such changes (Lamprecht and LeDoux, 2004). 
 

 
 
Figure 51: LTP induced spine growth over minutes and hours following learning 
 
If synaptic “movement” is a matter of such rewiring, then LTP changes in associative 
counts can be immediate, while such consolidations are then induced but made later.  
Such consolidation is not required to initially store the new memories, but only to better 
organize them. 
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4.6.2 Parallel sorting 
There is also a large body of work on hardware-based parallel sorting algorithms.  Even 
inefficient sorts like Bubble-sort are more reasonable when made parallel.  On the other 
hand, specific parallel algorithms such as a Batcher’s Bitonic sort are extremely efficient 
in hardware.  While the basic algorithm is well known, specific implementations in 
FPGA is an active area of research for considerations of concurrent and block-wise 
memory access (Layer and Pfleiderer, 2004).  
 
VHDL implementation of a sort method was explored early in this project but was then 
considered as best left to future implementations.  These initial efforts in message-
passing in a linear hardware structure for maximal matrices have been described in 
interim reports, but the implementation of affinity sorting is now the priority concern 
going forward. 
 
As discussed below, message-passing methods were explored, but it was very unclear 
whether this is advisable for hardware realization.  The decision depends on which 
sorting method is found to have better compression across scale, which is yet to be finally 
determined.  For instance, affinity sorting is a variant of a bubble sort, which could be 
implemented as message passing for localized swapping.  However, if strength sorting 
were found better, then this is a standard descending stable sort of projection strength.  In 
this case, the best general purpose hardware sort, such as bitonic sort, would be the best 
decision in this case – not a modified bubble sort.  Given the more complex sort and 
merge components of a bitonic sort, message passing would not be suggested.  
 
However, now that affinity sorting seems to be better than strength sorting, the Figure 52 
outlines how the translation table needs to be extended.   
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Figure 52: Small Matrix translation table for affinity-based sorting 
 
Much like softwire swapping above, the table must hold the current translation order as 
well as the prior-next projections for the given order.  As new observations are loaded 
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into the matrix itself, the prior-next projections must also observe and change along with 
the matrix itself.  Such projection changes can be easily computed from the context; 
projections should NOT be recomputed by scanning over the matrix per se.  These 
projections can then be swapped using a modified bubble-sort as described above.  Once 
the matrix is also modified to the new sort order, then the new order can be used as the 
current order. 
 
More like neural self-organization, the sorting of the translation tables is really only sort-
maintenance.  The expected design is to compute the next sort order to a Small Matrix 
while it is in cache and then stream the matrix content from the cache to persistence in 
the new order.  When the matrix is fetched again, it will be in the new order.  Therefore, 
the matrices will tend to need only partial resorting each time, since the majority of the 
matrix will be in order and is altered only by the effects on count changes for a new 
observation.  As matrices grow larger and gain more experience, the relative power of 
each observation to change the sort order will be continually reduced.  The sorting order 
will self-organize and stabilize over the long-term, and even when they grow beyond the 
bounds of a single block in cache, the history of the matrix sorting at smaller size and the 
limit of sorting even within each block should be sufficient.  Local message passing and 
swapping is likely to be very efficient.   
 
This approach can also support an anytime algorithm; depending on other resource 
demands, sorting can be arbitrarily delayed.  It can also be partial.  Any swapping moves 
the structure to a better state without requiring that the entire sort is completed.  Even if 
some sorting is accomplished at one phase, the matrix can be further consolidated at 
some later time – without effect to the perfect content of the memory itself. 
 
At the time of this writing, a combined method of strength and affinity sorting is 
unknown but is suggested for further thought.  Proximal (near the base soma) synapses 
are thought to be stronger than those that are distal (away from the soma).  Affinity 
between synapses is also widely thought to occur in the organization of dendrites as 
illustrated in Figure 53.   
 

Strong Base

Affinity Groups

 
 
Figure 53: Theory of Neural Structure based on some combination of sortings 
 
It is unclear how the sort methods and hierarchical groups map to a dendritic tree 
structure for coincidence detection.  But from the single matrix perspective, strong 
attributes should clearly be at the matrix “bottom” for improved run lengths while 
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affinities should be gathered together for “long and thin” matrix organization along the 
diagonal.  Furthermore, while explicit sorting of projections has been explored here, 
activity-based self-organization might cause such re-ordering as demonstrated by 
neuromorphic softwires.  In other words, as contexts are observed, the synapses might 
move together in response to each context rather than as an overall sort.  But this is all 
unclear at this time. 

5 Accomplishments and Lessons 

5.1 Project Results 
This work evolved through various accomplishments and setbacks which shifted 
priorities along the way.  Through these changes, decisions were made to pursue those 
avenues that would continue to drive toward eventual hardware implementation and be 
most profitable to further understanding of possible neural algorithms that would also be 
part of future hardware.  Some work was halted because it was inappropriate for such 
redirections (such as not placing Cognitive Constructs in VHDL) or because it became 
too uncertain without more fundamental understanding (not pursuing message passing in 
VHDL until sorting was better understood).  However, the two major initiatives each 
produced positive outcomes that will be profitable for continued work: 

• SaffronOne in VHDL.  Saffron is a software company.  This work was the first 
step in moving its products to hardware (at least the hot spot core) and providing 
an appliance model for enterprise scale.  Saffron personnel are not capable of 
synthesis and implementation, but as a first step in moving from software to 
hardware, our core methods are now explicitly documented and also described in 
VHDL behavioral models.  We believe that subsequent work with hardware 
experts will re-design, but our work is at least a communication vehicle to 
quicken such implementation.  Rather than starting from scratch, all of the core 
functions – except for bit-plane growth – are described.  Even basic functions for 
segment offsets, space filling curves, and such are clearly described for transfer to 
subsequent experts.  Both Large Matrix and Small Matrix algorithms were 
described.  Also, two designs of more naive implementations were described for 
boot-strapping and comparing them to the more complex structures. 

• Additional compression.  The Holy Grail of understanding dynamical dendritic 
structure and coincidence detection was not achieved, but very practical progress 
was made as a by-product of continuing to pursue Saffron’s ideas.  The perfection 
of compressing maximal matrices into a linear form did not progress to a more 
general case.  Several hypotheses about how to pursue these ideas were generated, 
and the exploration of projection-based sorting resulted as a practical result.  
Strength sorting and affinity sorting were both explored, but some future 
combination might still be most promising.  Although of long-time interest to 
Saffron, renewed research into large matrix sorting found new ideas in the 
literature about nearest neighbor definitions and the equivalence of matrix sorting 
to the TSP.  Projection sorting emerged as a practical answer.  Moreover, once 
sorting was established, the idea of hierarchical sharing of affinity neighbors was 
also found to be additionally effective in further compression.  Early work on 
message passing hardware was halted until such results were known (bitonic 
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hardware sorting would have been more effective for strength sorting), but 
subsequent implementations of the core in hardware should also include these sort 
methods, most likely in a message-passing, modified bubble sort. 

 
Continuation of this work will pursue implementation of the SaffronOne Small Matrix in 
VHDL along with the addition of sorting its translation table.  Saffron also intends to 
investigate patent protection of the new compression methods.  Elements of matrix 
projection and sorting have been claimed in past filings, but the added methods might 
also have merit as a new invention due to this work. 

5.2 Distributed Product Design 
During the course of this work, Saffron was also re-developing its products toward a 
distributed system design.  Our thinking about the hardware interface also affected our 
thinking about distributed product design.  Two principle design points are now common 
to the VHDL interface and SaffronOne’s service interface: 

• Index interface. Earlier versions of the SaffronOne interface were intended for 
single process functions, such as to support OEM applications.  The application 
would define its context in its own semantics of attribute-value and call 
SaffronOne for all translations and other processing.  However, in separating 
concerns into a distributed service system, most of the surround support functions 
such as translating external attributes into internal attributes have been separated 
from the core memory.  Now as a separate service process, SaffronOne assume 
that all context descriptions are referenced by the translated indices.  As we also 
investigate hardware partners for subsequent work, this design point seemed to be 
shared with other distributed platforms. 

• Count service. SaffronOne’s single process services also included a number of 
various inferencing options.  For instance, SaffronOne would use entropy-based 
or Bayesian-like computations across the matrix counts.  The product’s internal 
object architecture separated the counting from the inferencing, but when moving 
to a distributed system, this object separation became a process separation.  The 
primary concern of SaffronOne is now to update, serve, and accumulate raw 
counts.  These raw counts, in addition to the individual matrix counts, as also 
defined by the primate measures of experience (sum or associative counts) and 
novelty (absence of associative counts).  As decided in this project to port 
SaffronOne to VHDL, other inferencing options are so various and dependent on 
the application that they were not also described in VHDL.  As in the current 
product and as the expected “hot spot” for hardware replacement, SaffronOne is 
now focused on efficient multi-agent, associative matrix management. 

 
The distribution of service functions and such interfaces for the SaffronOne core in the 
software product also align it for subsequent re-implementation and replacement with 
hardware.   

5.3 Hardware Inexperience 
Finally, we learned that the difficulties of moving from a software basis to a hardware 
basis were harder than expected.  Saffron is a software product company and we 
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underestimated the process and tool experience and costs in porting to hardware.  
Because this work was just the first step with very high risks, it was inappropriate to staff 
Saffron with hardware expertise for a short term and uncertain future. We had some 
VHDL experience to draw on – and did make good progress – but we also now see that 
outsourcing and partnership with hardware expertise will be faster and more productive. 
 
On the other hand, the port to VHDL and the increased understanding of the neural 
device have established some strong assets to continue this work and realize an 
associative memory building block.  Based on the results of this work and other 
continuing demands on Saffron’s business, we now have even more motivation to 
implement SaffronOne in hardware and make it available for cognitive system 
applications at extreme scale.  As discussed in Future Directions, increased scalability is 
the highest current business priority.  We intend to outsource/partner for greater hardware 
experience.  We also intend to include the SaffronOne core developer who is an EE by 
historical training.  As we pursue this business and grow the company at large, additional 
hardware experience is likely to be a factor even if only for coordination with partners, 
but we now better understand the difficulties and issues for success. 

5.4 Application Scope 
Saffron has always considered the two options: scaling up to massive data problems and 
scaling down to embedded systems.  Hardware forms of associative memory will be 
required for both.  For example, hardware acceleration of algorithms will used to increase 
scale while hardware embedding will used for miniaturization. 
 
Saffron’s initial considerations were focused only on scaling down to embedded systems 
as a new, future business.  Saffron’s current business is focused on scaling up to massive 
databases and memory bases.  As the project requirements unfolded, the shift was toward 
AFRL’s and Saffron’s needs for hardware acceleration in Information Management.  But 
even within this scope, we began to understand different requirements between most 
current approaches and what Saffron is trying to do.  The development of the building 
block in VHDL, for now, is independent of these application drivers, but in moving 
forward to implementation and as a matter of different Cognitive Constructs, we now 
understand the following differences: 

• Microchip embedding.  Many future applications of associative will require an 
on-board or in-device memory chip.  These will be fixed-capacity system and the 
design of the building block and surround cognitive constructs will be hardwired 
into the design.  The current VHDL is close to this design in assuming that an 
entire memory will “fit” within dedicated FPGAs, for example.  This is 
neurologically realistic; neurons are devices that both process and store memories 
that are always “resident” in this sense.  There is no separation of process and 
memory and is optimized for real-time, constant use by the specific application. 

• Massive ingestion.  Within the more general purpose scope of Information 
Management, hardware acceleration is needed more for the massive throughput of 
data.  Rather than a small device model, specialized hardware is used within large, 
high performance systems.  However, all current approaches have a traditional 
assumption in trying to accelerate “ingestion”.  Most cognitive algorithms and 
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supporting methods assume fixed runtime models.  For instance, entity extractors, 
decision tree and other classifiers, latent semantic indexing, concept mapping, and 
virtually all other vendors and research initiatives use the phrase “ingestion rate” 
to describe how fast a fixed model can process an incoming stream of data.  Like 
rules, decision trees, latent semantics, neural classifiers, entity extractors, and 
more, these models are reductionistic.  As such, these models tend to be reduces 
to a size and function in which they are complete resident in a large “sea of gates” 
or cache memory.  The common idea is that a fixed model is resident and can 
rapidly apply its model to the incoming stream, such as to quickly extract 
concepts or classify documents, for example. 

• Massive assimilation.  These other approaches can only “ingest” at high rates 
because they are not incremental and lossless models like Saffron.  For example, 
decision trees, most neural networks, latent semantic indexing are all built offline 
in slow, parametric batch-mode knowledge engineering processes.  They are 
totally incapable of building and modifying their models as also a matter of 
ingestion.  This is the way the brain works.  Unlike abstracted, reductionistic 
models that cannot by their nature be truly incremental for on-the-fly learning, 
Saffron observes and modifies its models as a process of assimilation.  Like real 
neural learning, new data is embedded into the existing knowledge representation, 
which involved the more complicated issues of growing and managing the 
representation.  Not only this, Saffron manages millions of such models, which 
cannot possibly all reside in cache at the same time. 

 
These realizations became clearer as this project considered the various Cognitive 
Constructs required for different Information Management applications and how the 
project managed its resources for future practical success.  The Publish-Subscribe 
architecture of the Air Force Research Lab’s Joint Battlespace Infosphere 
(www.rl.af.mil/programs/jbi) is one example.  The issue is in whether the high-event 
rates are driven to new observations (writes) or imaginations (reads).   In such systems, 
the resident model must represent user subscriptions and serve as a router of new 
publications to such subscriptions.  As such, observation events are defined by user 
subscription requests.  These are low volume.  High performance is required to handle the 
high rate of publication. 
 
As described in Future Directions, Saffron is most stressed by real-time-modeling of the 
new data.  In other words, whether through a pub-sub architecture or in any other case in 
which massive data needs to be modeled and indexed, the focus needs to be on the speed 
of assimilation to model the publications, not the subscriptions.  Saffron does also model 
users and user events, but these models are used to refine query intentions.  Query rates 
are also much lower than source publication events; therefore, the fetching, updating, and 
query of user models is also not as taxing as source modeling.  For continued interests of 
JBI, this means that Saffron’s massive assimilation and memory modeling should be 
applied to it Query Service.  Saffron would subscribe to all new content entering JBI in 
order to provide a knowledge-level memory base of all people, places, and things in the 
total repository. 
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Saffron’s architecture for massive source modeling makes such associative memories 
very memory-intensive and storage-intensive, not CPU intensive.  In addition, the I/O 
bottleneck of Von Neumann architectures is the overriding issue, which is why 
compression and partitioning are so important.   Saffron memories are universal and can 
also be applied to large but single model classification (hetero-associative) and latent 
semantic indexing (auto-associative), but because such smaller fixed-models might be 
adequate, such applications are not as discriminating of Saffron.  Context-dependent, 
incremental learning at massive scale is much harder and more valuable, but these rates 
and dynamics push the need to very flexible hardware acceleration, including issues of 
mass storage and high performance I/O. 

5.5 Theory Advancement 
It is hard to describe conceptual progress when the final answers are not yet clear.  For 
instance, we cannot yet say exactly how neurons compute coincidence detection in thin 
dendrites.  While maximality is intriguing and sorting and hierarchy are better are now 
better understood, we still cannot report a complete, coherent theory.  However, we feel 
that this work has moved our conceptions closer to a true understanding.  Aside from the 
bit-planing, segmentation, sorting and hierarchy that have been discussed as major 
elements of the solution, a number of smaller but significant points have also become 
clearer over the course of this work: 

• Maximality is not required to still pursue the benefits of sorting.  While 
maximal matrices are perfectly compressed into linear projections, this extreme is 
not required for progress.  Projections of a maximal matrix are also now seen as 
zero-offset run lengths.  We also considered schemes for message-passing reads 
of run lengths with non-zero starts and how perfect run length encoding might 
work.  But when nothing was clear and successful, the benefits of sorting toward 
better run length encoding remained profitable.  Maximal projections still provide 
the best example of representing a large number of associations and reading the 
matrix as a form of coincidence detection using only the sort order of this “thin” 
linear structure.  Sorting creates fewer run lengths in general, but there is still a 
gap in understanding this ideal structure for thin dendrites and the complexities of 
real associative matrices. 

• Projection sorting is commutative across a complete matrix.  The VHDL 
design was limited to a single “existence” plane.  Also, many if not most 
examples in Advanced Explorations show single bit vector examples.  However, 
the methods and results for sorting and sharing were based on complete, 
associative counts.  For example, the strength and affinity projections were 
defined not just as the number of associative bits; they were defined as the sum of 
associative strengths.  In earlier implementations, Saffron tried to sort each bit 
plane; however, the translation tables for each bit-plane can be come more 
expensive than the savings made by translation table sorting.  However, the 
translation table is now at the level of the entire Small Matrix.  It is also a “sunk” 
cost in that each Small Matrix needs one.  In the case, the sort order of the single 
table is “free”.  We discovered as a course of this work that projections based on 
total association counts across bit-planes still effects the compression of each bit-
plane.  In other words, the sum of bit-plane projections has a commutative effect 
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in that the sort of the total sums has the equivalent effect of sorting each plane and 
summing the separate effects.  Whereas, sorting of each plane had less practical 
value due to the cost, the current method is more “free” and of practical value.   

 
As described above, there are still many uncertainties in moving these discoveries into 
product.  This AFRL support was a rare opportunity to pursue some ideas that we believe 
will eventually lead to a breakthrough general theory, although it is now time again to 
move these results into practice.  As described below, the project has lead to much 
greater clarity with good results for moving forward.  
 
 

6 Future Directions 

6.1 Appliance Model 
There are many past failures of AI and NN hardware efforts.  For example special LISP 
processors and neural network accelerators have been developed in the past but without 
much (if any) market success.  There could have been many reasons for these past failure, 
including the fact that the underlying technologies were to young and ineffective to 
support a mass market.  For example, AI itself has had limited success – hardware or 
software.  This is less true of neural networks, but even here, the availability of cheap 
general purpose computing never allowed special purpose accelerators to have much 
benefit/cost, except in the most dedicated, embedded applications. 
 
This argument remains with force:  A hardware solution must significantly outperform a 
software solution on general purpose hardware in order to compete.  But the software 
world is also changing and other costs of installation and maintenance are changing the 
equation, especially for large-scale enterprise solutions.  The costs of software 
installation, configuration, and maintenance are driving many applications to an 
“appliance” model.  This model provides the customer with a complete solution in a 
hardware box, which is then simply be inserted into a local network.  Entire, enterprise-
scale solutions can be pre-configured by the provider for simple installation to the 
customer. 
 
Other industry dynamics are also forcing the need for hardware-based appliances.  The 
growth and distribution of data and documents is unprecedented.  For example, databases 
are so large that many data mining techniques are virtually impossible without 
acceleration.  Companies such as Teradata and Netezza are addressing the need for “data 
appliances” to make even basic queries of massive data at scale.  Even for basic SQL 
queries that find non-obvious relationships across a number of databases, companies like 
Seisint (now Lexis-Nexis) are largely based on a parallel, distributed query platform.  In 
the area of unstructured indexing and search, at the scale of the Web, Google and other 
search engines require massive operation centers and our now selling “search appliances” 
for corporate enterprises to manage their own internal documents.   
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Saffron software solutions have also outperformed one competitor, Non-obvious 
Relationship Awareness (NORA, now owned by IBM), in accuracy (only 2% success 
compared to Saffron’s 80% success) on a most difficult intelligence problem.  Now 
called IBM DB2 Identity Resolution, the hardware costs are 10X software costs.  
Increased Saffron hardware performance can also compete on total price/performance as 
well as the proven difference in accuracy. 
 
Saffron is in some sense another form of database, although a memory base.  We provide 
a search and index system for massive amounts of structured and/or unstructured 
information, but what is more difficult, we do this at the level of real-time knowledge 
based on real-time associative memories.  Saffron is associative, not relational, which 
opens up a number of new and more powerful cognitive abilities.  Saffron is also 
planning to re-enter the commercial market and has plans to approach the major search 
engine companies within this year, but current government customers are now the most 
demanding.  The need for continued scaling, which will require hardware acceleration, is 
the most pressing issue for many current efforts for the government: 

• Data disambiguation.  Saffron has proven its unique ability to solve on of the 
most difficult problems across the intelligence community.  Working in the 
Research and Development Experimental Center (RDEC) for agencies such as the 
CIA and DIA, Saffron has developed an analogy-based method for detecting 
aliases and other ambiguities, not just within one database, but across different 
databases across different agencies.  As just described, the nearest competitor 
failed this test on real foreign intelligence data (2% accuracy) while Saffron was 
recently measured at 80% accuracy.  A small but multi-server system has been 
proven to join two databases of over 100K-200K entities each, but this is just the 
tip of the iceberg.  Many, many more databases are intended for future work, the 
total number of entities that will need modeling needs another order of magnitude 
(or two) to cover the number and size of relational and transactional data that 
should be ideally considered. 

• Open source intelligence.  Saffron has recently started a new effort under the 
Topsail Project (classified owning agency, but administered through AFRL) in 
partnership with Factiva, a Dow Jones and Reuters Company.  Stress testing of 
Saffron is a first order of investigation.  Saffron will install itself within Factiva’s 
operations center, which receives 100K-200K news documents/day.  This is 
within Saffron’s current capability, but the very long-term performance of a year 
or more is unknown.  Factiva also has 30 years of open source news that should 
also ideally be observed by Saffron.  This volume is likely unreasonable without 
hardware acceleration to assimilate such a large backlog to support OSINT. 

• Deep Web mining.  Although nothing is in contract or even qualified, Saffron 
was recently approached by IBM to work on its WebFountain solution within 
DIA.  In case, the rates will be millions of documents/day. 

 
Embedded applications remain as an additional future of associative memory hardware, 
but toward Saffron’s nearer-term business interests, we intend to provide our current 
enterprise software solutions within such an appliance model and are thankful to AFRL 
for the past and future support. 
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6.2 SBIR Continuation 
Thanks again to AFRL, Saffron has been awarded a Phase I award for continued research 
and business innovation in Cognitive Hardware.   While Saffron personnel were able to 
describe the core memory representation and functions in VHDL behavioral models for 
this current work, implementation and synthesis will be outsourced to hardware experts 
for the SBIR continuation.  More than this, expertise in leading edge FPGA application is 
required to configure the system at large.  For instance, because Saffron is I/O intensive, 
a SaffronOne microprocessor for the core computations is only part of the required 
solution.  How such an FPGA micro-processor interacts with cache memory, distributed 
communication bandwidth, and massive memory persistence mechanisms must also be 
defined for a complete solution.   
 
Toward the “business” of an SBIR, Saffron intends to prototype its Saffron Enterprise 
Platform as a software/hardware mix for its most demanding customers.   Toward the 
“research” of an SBIR, Saffron will partner with a research institution for properly 
exploring novel hardware solutions for such a platform. 
 
Saffron intends to collaborate with John Lockwood from Washington University in St 
Louis.    This collaboration will leverage other existing work by Saffron and by WUStL 
that are both currently under SAIC testing and integration at RDEC (under classified 
DoD ownership).  The effort now has all 15 intelligence agencies and a growing number 
of military commands as its customers.   Both Saffron and WUStL have provided 
outstanding, independent results to date: 

• Saffron Technology.  For example, Saffron uniquely solution to the alias 
detection and multi-database disambiguation problem has already been described.  
SaffronWeb for Discovery and Sharing is also being evaluated as yet another core 
application for the center.  In general, Saffron is seen in RDEC as the 
breakthrough technology for many of the hardest problems – at scale.  On the 
other hand, while Saffron’s software solution has scaled to millions of attributes 
per associative matrix and millions of such matrixes for tracking various people, 
places, and things, the demands of RDEC customers and the future requirements 
of the intelligence community are driving the need for even further scale, best 
provided by hardware. 

• Washington University.  In compliment, WU St Louis is also a key component 
of RDEC toward automating the “front end” content processing of very high 
throughput.  The goal is to apply advanced cognitive algorithms to Internet data 
rates.  As shown in Figure 54, stacks of WUStL’s Field Programmable Port 
Extender (FPX) implement various processing methods, from simple parsing to 
high level semantics at very high rates.  For example, WUStL has ported Latent 
Semantic Indexing (LSI) to such hardware and is categorizing 30,000 
documents/second.  

 
Beyond the FPGA-based core processing, this platform is also ideal for 
software/hardware mixing.  The FPX interfaces support IP protocols for TCP or UDP 
communication to other network subsystems, which might be other FPXs or other 
software application of persistence subsystems. Each of the hardware modules is 
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equipped with 2 banks of pipelined SRAM and 2 banks of SDRAM.  Each can do up to 
four memory operations per hardware clock cycle. Up to 1 Gigabyte of memory can be 
loaded onto each module (512MBytes on each of 2 SDRAMs, and 2MBytes on each 
SRAM).  The FPGA is a Xilinx Virtex 2000E (about 2M gates of logic). 
 

 
 
Figure 54: FPX Configuration for deep context processing at Internet rates 
 
The SBIR plan is to complete the work begun here and implement the VHDL within an 
FPX module.  Many elements of the Saffron and WUStL architectures are similar.  For 
instance, both systems include additional infrastructure to parse the ingestion flows, parse 
documents, and identify semantic words by index through an atom table.  Both are 
distributed, multi-processor systems in which the core algorithms (whether Saffron or 
LSI) receive IP packets with index-based description vectors of the original content.  
Saffron and WUStL both have installations managed by SAIC within RDEC.  The plan is 
to install SaffronWeb on the WUStL software/hardware platform and then replace the 
SaffronOne software servers with FPX-based equivalents using the same network-based, 
index-based interface from one to the other. 
 
It is critically important to also understand that this work must address more than just the 
FPGA implementation of the Saffron VHDL as described above.  As already mentioned, 
Saffron is not a static-model like LSI and requires more than in-memory residence of 
such a model.  Two issues must be further addressed specifically for Saffron’s approach 
to associative memories at massive scale: 

• Dynamic assimilation.  Unlike LSI and almost all other machine learning 
approaches, Saffron allows for incremental learning.  Rather than training phases 
that build a model and then load a static version of the model for runtime use, 
Saffron is a memory that can be constantly updated even during its use.  Such 
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dynamics push the meaning of “flexible” hardware.  We are very uncertain of 
how the VHDL tree growth and other dynamics will survive synthesis and 
implementation.  The current VHDL design assumes more of an embedded 
system design in which the Saffron structures are entirely within the FPGA.  
Instead, it might be more reasonable to implement a micro-processor version of 
the methods in which the structure itself is manipulated within the memory cache.  
In any case, this is left to the hardware development experience of WUStL, which 
has implemented many other algorithms and complex data structures in the past. 

• Massive storage block device.  The WUStL installation at RDEC already 
includes a large scale Storage Area Network (SAN).  Saffron is also investigating 
the use of a SAN to improve its own scaling, software or hardware.  Saffron is 
planning a re-design of its persistence layer in order to more directly work with 
block-devices.  Currently, Saffron stores are memories in any JDBC-compliant 
database.  There are many benefits to commercial database persistence, but it is 
also wasteful to Saffron’s core persistence needs.  The blocks described about are 
merely stored as “blobs” in the database.  The block addressing is simple and 
there is nothing relation in the content that requires the relational overhead.  As 
such, Saffron is moving to remove the database requirement and more directly 
control the I/O as its own block device and we are exploring the block device 
interfaces provided by SAN vendors. A “raw” block device interface will be used 
to support the persistence of SaffronOne servers, whether in hardware or 
software.  Saffron will define this block design implementation in coordination  
with WUStL for common use. 

 
Both of these elements seem within the capability of WUStL personnel and the FPX 
platform.  Saffron will provide the current VHDL description to bootstrap the new design 
and work together to define the block device storage strategy.  WuStL has implemented 
many other algorithms in hardware de novo (such as LSI from SAIC and associative 
methods from Fair Isaac); therefore, Saffron’s VHDL descriptions should accelerate their 
process.   
 
A key to success will be to focus the hardware implementation on a specific “hot spot” 
function.  The VHDL behaviors of the current work include both the observe (write) 
function as well as basic imagine (read) functions.  In actuality, Saffron’s distributed 
system design separates the observe and imagine functions into two, separately dedicated 
processes as shown in Figure 55.   
 
We intend to focus the hardware implementation on the following elements: 

• Observation processor.  Both observe and imagine functions are desirable, but 
we will focus on accelerating the observation rate as the bigger bottleneck. 

• Affinity sorting. The sorting methods will also be added to the implementation in 
order to further compress the memories, such as when moving from cache to 
storage. 

• Block storage.  I/O is the primary bottleneck to current performance.  Block 
device interfaces and other relevant architectural issues will be addressed to 
overcome this bottleneck. 
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Figure 55: Distributed hardware/software processors across by massive storage 
 
Of course, as one bottleneck is removed, others such as communication bandwidth will 
become the next limiting factor.   
 
Contractually, the first task of the SBIR is to research an appropriate platform, which 
must also be with an academic institution.  Of options are also available, but the WUStL 
FPX platform and personnel seem ideal.  For one, this choice will leverage the common 
SAIC arrangements within RDEC, which is very metrics oriented and provides a source 
of massive data.  Second, John Lockwood and the FPX platform are also associated with 
a venture company called Global Velocity.  The outsourcing of SBIR work can enjoy the 
rates and research benefits of an academic institution while also already having a 
commercial organization for subsequent platform availability as a partner. 
 
Otherwise, one of the first tasks will be to develop a test plan.  In order to better plan the 
implementation scope, the volumes and type of data will be defined along with the 
expected goals of the system.  For example, the desired (sustainable) assimilation rate 
should be determined up front in order to then design the system for such goals.   The test 
plan and metrics will focus on: 

• Observation speed.  Software and hardware modules should conform to the same 
interface and be plug-and-play.  This will allow comparison of assimilation rates 
between software and hardware.  This will be described functionally as 
documents/second and/or structurally as associations/second.  Desired and actual 
speed up will be reported. 

• Persistence size. Increasing the observation rate to new levels will also drive the 
storage requirements to new levels.  Increased storage costs must also be 
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accounted.  This will drive the need for sorting-based consolidation, which should 
improve these storage costs.  Small matrices will also improve bandwidth and 
likely improve overall observation speed as a side effect.  The inclusion of 
sorting-based consolidation will be considered as an option in order to measure 
and report such differential effects. 

 
The goal accomplishment of this work is to demonstrate a prototype software-hardware 
appliance model of Saffron’s product that would address the high performance demands 
of Saffron’s current customers and the interests of JBI. 

6.3 Quantum Neurons 
Several neural network algorithms, including associative memories, have been proposed 
in as theoretical quantum algorithms.  For instance, a form of associative memory has 
been derived from Grover’s algorithm for quantum search (Ventura and Martinez, 1998).  
This model has even been simulated against standard machine learning databases and 
shows exponential memory capacity.  For example, one test with 200 patterns was 
learned by only 7 quantum “neurons”. 
 
Another body of research also suggests that neurons and brains are quantum computers 
(Hameroff, 1987).  As in Figure 56, these quantum effects are believed to exist in the 
microtubules within dendrites.  In the same way that dendrite segments are thin, linear 
structures, the interiors of dendrites are filled with long, thin microtubules.  While 
traditional thinking held these as merely skeletal and supportive of neural structure, there 
is also speculation that the microtubules are fundamental to neural computation.  The 
tubules protein elements might provide an electron switch, and since this speculation also 
holds that the interior of the microtubules can provide the isolation required for long-
range quantum coherence. 
 

             
 
Figure 56: Microtubule with electron switching and electro-isolated interior 
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On the other hand, the theoretical speculations about quantum algorithms also have a 
neural counter-argument.  Even if neurons do use quantum effects to speed computation, 
there is a big difference between the vast number of atoms and complex molecules used 
by real neurons and the single-atom power that is assumed by quantum computing.  For 
example, the quantum dream is that a 64bit quantum computer can be implemented by 
only 64 atoms.   
 
Although all such things are possible, we suggest that this position for hardware 
intelligence is equivalent to the hubris of AI during its early years.  AI assumed that 
computers would surpass human cognitive ability within a decade of its founding in 
1957.  Its philosophies rejected the idea that actual brains were fair superior and that the 
“wetware” that supported cognitive functioning might hold the keys to improved 
computer design.  We suggest that real neurons might indeed use quantum effects but that 
quantum computing has limits – more to the scale of “wetware” abilities already found by 
neural evolution. 
 
In fact, separate from any consideration of quantum neurons, some experts in general 
quantum computation warn of many uncertainties.  For example, the exact mechanisms 
of quantum effects and the nature of quantum coherence are still unknown (Brooks, 
1999).  The limits of coherence and the ability for individual atoms to entangle with each 
other might hamper the reality of building a 64bit computer with only 64 bits.  Quantum 
entanglements and coherence might have limits even if real neural systems use quantum 
effects within these limits.   On the other hand, if individual atoms and nanostructures do 
have quantum limits, then the partitioning and ordering explored here and seen in 
neuromorphic structures might also be relevant.  Neural architectures will likely continue 
for many decades to be the inspiration for cognitive architectures, whether using quantum 
effects of not.  
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Appendix A Associative Memory 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : AssocMemory 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : AssocMemory.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This entity specifies the basic hardware interface for the SaffronOne core. 
--           The input ports of this entity are as follows: 
--             
--           CE -- enables the chip for operation 
--           CLK -- clock signal to drive the chip 
-- 
--           OE -- Output Enable (active low): putting a '0' on this line indicates the 
--               associative memory chip should perform an imagine call (query) 
--           WE -- Write Enable (active low): putting a '0' on this line indicates the 
--               associative memory chip should perform an observe (update assoc. counts) 
-- 
--           ATTR_[0-3] -- each ATTR bus specifies the atom of an attribute for some context. 
-- 
--           SEL -- this bus indicates which ATTR buses should be read and included in the 
--               context: 
--               '00' means only first attribute (context of one is ignored) 
--                '01' means first two attributes (ATTR_0 and ATTR_1) 
--              '10' means first three attributes (ATTR_0, ATTR_1, and ATTR_2) 
--              '11' means first four attributes (all) 
-- 
--           GOAL --  This is an experimental inout bus for handling results from an Imagine call. 
--               The idea is that one could express the target category for an AttributeQuery 
--               goal field on the high end of the bus as an input, and when the Imagine was  
--               executed, the resulting value could be placed on the low-end of the bus  
--               as an output of the AM chip. 
--                                  
--           NOV_CNT -- This is the novelty count for the context.  For an observe, this value 
--               indicates how many of the pairwise associations have never been observed 
--               before.  For n input attributes, this value will never be greater than 
--               the number of unique pairs in the context or n * (n - 1 ) / 2. 
-- 
--           EXP_CNT -- This is the experience count for the context.  For an observe, this value 
--               indicates how many times each pairwise association in the context has been 
--                  previously observed.  For a single bit plane (existence plane), this value 
--               will plus the NOV_CNT value will always total n * (n - 1) / 2. 
-- 
--           P_ADDR -- Persistence Address: specifies the memory address for the persistence 
--               (eg, flash eeprom) to read from or write to       
-- 
--           P_DATA -- Persistence Data: specifies the data to be written to persistence or 
--                provides a bus for placing data read from persistence 
-- 
--           P_OE -- Persistence Output Enable: specifies that the address on P_ADDR should 
--              be read from memory and its data placed on P_DATA 
-- 
--           P_WE -- Persistence Write Enable: specifies that the memory word at the address  
--              on P_ADDR should get the new data value found on P_DATA 
-- 
-- 
--------------------------------------------------------------------------------------------------- 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
 
entity AssocMemory is  
  generic( 
     attr_width : natural; 
        addr_width : natural;     
     data_width : natural     
  ); 
   
    port( 
        ATTR_0   : in STD_LOGIC_VECTOR(attr_width-1 downto 0); -- 
        ATTR_1     : in STD_LOGIC_VECTOR(attr_width-1 downto 0); -- these are the attributes of the context 
        ATTR_2     : in STD_LOGIC_VECTOR(attr_width-1 downto 0);   -- 
        ATTR_3     : in STD_LOGIC_VECTOR(attr_width-1 downto 0);   -- 
         
        CE       : in STD_ULOGIC; -- Chip Enable 
        OE       : in STD_ULOGIC; -- Output Enable, which is "IMAGINE" (active low) 
        WE       : in STD_ULOGIC; -- Write Enable, which is "OBSERVE"  (active low) 
        CLK    : in STD_ULOGIC; -- Clock signal 
         
        SEL    : in STD_LOGIC_VECTOR(1 downto 0); -- need to identify which of 4 attributes are part of context 
                       -- '00' means only first attribute (context of one is ignored) 
                        -- '01' means first two attributes (ATTR_0 and ATTR_1) 
                    -- '10' means first three attributes (ATTR_0-2) 
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                    -- '11' means first four attributes (all) 
         
        GOAL   : inout STD_LOGIC_VECTOR(attr_width-1 downto 0); -- identify goal field category, and write query output 
value         
         
        EXP_CNT  : out STD_LOGIC_VECTOR(2 downto 0); -- holds the experience score for the context 
         NOV_CNT  : out STD_LOGIC_VECTOR(2 downto 0); -- holds the novelty score the the context 
         
        P_ADDR   : out STD_LOGIC_VECTOR(addr_width-1 downto 0);   -- address for Flash to read/write 
        P_DATA   : inout STD_LOGIC_VECTOR(data_width-1 downto 0); -- data for Flash to read/write 
        P_WE   : out STD_ULOGIC; -- drives the persistence Write Enabled  (flash write) 
        P_OE   : out STD_ULOGIC  -- drives the persistence Output Enabled (flash read) 
        ); 
         
end AssocMemory; 
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Appendix B Naïve Large Matrix 
 
-- 
-- Title       : Uncompressed Large Matrix implementation 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : UncompressedLargeMatrix.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : Trivial implementation of the AssocMemory entity that performs 
--          a direct/full mapping of the co-occurrence matrix onto a  
--           persistence memory.  This implementation is meant to serve as a  
--          reference or benchmark for more advanced implementations. 
-- 
--------------------------------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
use IEEE.STD_LOGIC_ARITH.all; 
 
library LargeMatrix; 
use LargeMatrix.MatrixTypes.all; 
 
architecture UncompressedLargeMatrix of AssocMemory is 
 
 function COMPUTE_ADDR(ATTR_A : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
                 ATTR_B : in STD_LOGIC_VECTOR(attr_width-1 downto 0)) 
    return INTEGER is 
    variable bit_addr_int : INTEGER; 
    begin 
       -- compute address of existence bit via concatenation (eg, 24 bit address, if each attribute is 12 bits) 
       bit_addr_int := CONV_INTEGER(ATTR_A & ATTR_B); 
       return bit_addr_int; 
    end; 
 
                          
begin                     
     
 -- 
 -- This is the main process loop for this implementation.  At every clock signal, it is either 
 -- attempting to pull a new set of attributes (context) off of the set of buses (ready is true),  
 -- or it is processing the context to observe (ready is false). 
 -- 
 -- This allows for a single co-occurrence calculation per clock tick.  That co-occurrence 
 -- data is then placed on the memory bus for writing.  Because a full-matrix representation 
 -- requires bi-directional co-occurrences, this means that a context w/ n attributes will 
 -- require n(n-1) clock ticks to be fully observed. 
 --   
 process  
    variable p_bit_addr_int : INTEGER := 0;  
    variable sel_int : INTEGER; 
    variable inner : INTEGER; 
    variable outer : INTEGER; 
    variable ready : BOOLEAN := TRUE; 
    variable p_data_driver : STD_LOGIC_VECTOR(data_width-1 downto 0); 
 
    type VECTOR_ARRAY is ARRAY(0 to 3) OF STD_LOGIC_VECTOR(attr_width-1 downto 0); 
    variable ATTR_SIGNALS : VECTOR_ARRAY; 
     
 begin    
      
     wait until rising_edge(CLK); 
 
     -- put the signals into a vector, so that the rest of this routine can 
     -- manipulate n number of signals in a generic manner 
     ATTR_SIGNALS(0) := ATTR_0; 
     ATTR_SIGNALS(1) := ATTR_1; 
     ATTR_SIGNALS(2) := ATTR_2; 
     ATTR_SIGNALS(3) := ATTR_3; 
      
     if (ready and (sel_int /= CONV_INTEGER(SEL))) then 
       sel_int := CONV_INTEGER(SEL); 
       outer:= sel_int; 
       inner:= sel_int - 1;    
     end if; 
         
     if (sel_int = 0) then 
        -- todo: wait for a ready/done signal from flash? 
        P_WE <= '1'; 
        P_OE <= '1'; 
        ready := TRUE; 
     else 
        ready := FALSE; 
     end if; 
         
     -- compute the persistence address (P_ADDR) based on each pair of attribute inputs 
     if (sel_int > 0) then       
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        -- todo: wait for a ready/done signal from flash? 
        
       p_bit_addr_int := COMPUTE_ADDR(ATTR_SIGNALS(outer), ATTR_SIGNALS(inner)); 
                 
       p_data_driver := (OTHERS => '0'); 
        
       p_data_driver(p_bit_addr_int MOD data_width) := '1'; 
        
       -- locate this "bit" address (bit-based) in the address space (word-based) 
       P_ADDR <= CONV_STD_LOGIC_VECTOR(p_bit_addr_int/data_width, addr_width); 
       P_WE <= '0'; 
       P_DATA <= p_data_driver; 
        
       -- determine the next pair of attributes to be observed 
       --NEXT_PAIR_HALF_MATRIX(inner, outer); 
       NEXT_PAIR_FULL_MATRIX(inner, outer, sel_int); 
        
     end if;      
 end process;    
end UncompressedLargeMatrix; 
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Appendix C Large Matrix 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Limited Small Matrix implementation 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : SimpleSmallMatrix.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This architecture of the AssocMemory entity seeks to duplicate the software  
--           implementation referred to as the "small matrix" design.  The fundamental 
--           technique is to keep a matrix of size NxN where N is the number of attributes 
--           observed, not the number of possible attributes.  This implementation only stores 
--           half of the matrix (since it is symmetrical), and only stores a single bit for 
--           each pairing, to represent an existence memory.  Therefore, for N unique observed 
--            attributes, this implementation consumes N*N/2 bits of storage (N*N/16 bytes) which 
--           was done as a single bit vector in this simplified implementation. 
-- 
--           In general cases, this implementation is very compact, using storage resources 
--           very efficiently, while performing observes very quickly.  However, the trade-off 
--           is speed of queries, which typically involve more searching and lookups than the 
--           large matrix design.  This query trade-off is usually acceptable for smaller values 
--           of N. 
-- 
--------------------------------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
use IEEE.MATH_REAL.all; 
use IEEE.STD_LOGIC_ARITH.all; 
 
library LargeMatrix; 
use LargeMatrix.MatrixTypes.all; 
 
architecture SimpleSmallMatrix of AssocMemory is 
 
    -- values for FSM 
    type SmallMatrixState is (DISABLED, IDLE, OBSERVE, IMAGINE_RESPONSE, IMAGINE_ATTR_QUERY, QUERY_RESULTS); 
    signal state : SmallMatrixState := DISABLED; 
 
    constant max_context_size : NATURAL := 4; 
     
    -- support a 256 attribute matrix (256 x 256) 
    constant matrix_dimension : INTEGER := 256; 
 
    -- the entire existence matrix is managed as a single vector 
    -- since the matrix is symmetrical, only need to store half of it 
    -- this means a N x N matrix requires N*N/2 BITS of storage. 
    -- For 256, this means 8 kB.  
    subtype EXISTENCE_MATRIX is STD_LOGIC_VECTOR(0 to matrix_dimension * matrix_dimension / 2); 
     
    -- data type for representing attribute atoms 
    subtype ATTR is STD_LOGIC_VECTOR(attr_width-1 downto 0); 
     
    -- data type for containing all attributes in a single context 
    type ATTR_ARRAY is  ARRAY(0 to max_context_size-1) OF ATTR; 
     
    -- data type for holding each logical row/col index for an attribute 
    type LOGICAL_INDEX_ARRAY is ARRAY(0 to max_context_size-1) OF INTEGER; 
 
    -- uninitialized value placeholder ("tombstone") used when context size is less than 4 
    constant UNASSIGNED : INTEGER := -9; 
     
    -- data type for holding all logical row/col indices for observed attributes 
    -- a better implementation would actually support some sort of lookup (constant order) 
    -- function, such as a hash.  For demonstration purposes, this implementation does 
    -- an exhaustive, linear search (order N). 
    type LOOKUP_ARRAY is ARRAY(0 to matrix_dimension-1) OF ATTR; 
 
 -- 
 -- This function determines the offset into the physical matrix storage vector given a  
 -- logical row/column address. 
 -- 
 function COMPUTE_PHYSICAL_OFFSET(row : in INTEGER; col : in INTEGER) return INTEGER is 
 
    variable offset : INTEGER; 
  
     -- the physical storage maps half of the square matrix onto a single bit vector: 
     -- 
     -- 
     --         LOGICAL FORM IS A MATRIX           PHYSICAL FORM IS AN ARRAY 
     -- 
     --            COLUMNS 
     --         0   1    2    3    4                   INDEX   (ROW, COL) 
     --          -----------------------                  0 =>  (0,0) 
     --      0  |  0                              1 =>  (1,0) 
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     --  ROWS 1  | 1    2                              2 =>  (1,1) 
     --      2   |   3    4    5                         3 =>  (2,0) 
     --      3   |   6    7    8    9                    4 =>  (2,1) 
     --          |                               ... etc. 
     -- 
     --    .. etc. 
     -- 
     -- Since only half of the matrix is stored, we first find the row offset based on how 
     -- many columns are in each row, and then add the column offset to that row offset. 
     -- 
     -- So, row R has an offset of the sum of the series of (i), for i=0 to R.  This is more easily computed 
     -- as R * (R+1) / 2.  Then, we just add the column value, C, to determine the complete offset for the 
     -- row, column pair.  Offset => [R * (R+1) / 2] + C. For example, (3,1) corresponds to 3*4/2 + 1 = 7. 
 begin 
     offset := row * (row + 1) / 2; 
     return offset + col; 
 end COMPUTE_PHYSICAL_OFFSET; 
 
 -- 
 -- Given an array of attribute atoms (ATTR_SIGNALS), determine the logical row/col index for 
 -- each and put those values in the logical_indices return value.  The indices are either 
 -- found in the lookup_table (attributes that were previously observed), or they are added 
 -- into the lookup_table at the next_free_index (attributes that have never been observed). 
 procedure FIND_INDICES(ATTR_SIGNALS : in ATTR_ARRAY; lookup_table: inout LOOKUP_ARRAY;  
                logical_indices : inout LOGICAL_INDEX_ARRAY; 
                next_free_index : inout INTEGER) is 
                   
    variable lookup_entry : ATTR; 
     
    variable i : INTEGER := 0; 
     
 begin 
     -- loop over entire table, to try and find already existing index 
     for i in 0 to next_free_index-1 loop 
        lookup_entry := lookup_table(i); 
        -- compare the table entry to each attribute, if matched, assign the logical index 
        for j in 0 to logical_indices'length-1 loop         
          if ((not Is_X(ATTR_SIGNALS(j)) and (not Is_X(lookup_entry)) and (lookup_entry = ATTR_SIGNALS(j)))) then 
              logical_indices(j) := i;         
          end if; 
        end loop; 
     end loop; 
      
     -- loop over attributes, if any are unassigned, then give them the next free slot at end of table 
     for a in 0 to logical_indices'length-1 loop 
        if (not Is_X(ATTR_SIGNALS(a)) and logical_indices(a) = UNASSIGNED) then 
          logical_indices(a) := next_free_index; 
          lookup_table(next_free_index) := ATTR_SIGNALS(a); 
          next_free_index := next_free_index + 1; 
        end if; 
     end loop; 
      
 end FIND_INDICES; 
  
 begin process 
      
    variable sel_int : INTEGER; 
    variable exp_int, nov_int : INTEGER; 
    variable outer, inner : INTEGER; 
 
    alias goal_category : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width-1 downto attr_width/2); 
    alias goal_value    : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width/2 - 1 downto 0); 
 
    variable ATTR_SIGNALS : ATTR_ARRAY; 
     
    variable cache: EXISTENCE_MATRIX := (OTHERS => '0');   
     
    variable next_free_index : INTEGER := 0; 
     
    -- this structure maps attribute atom values to their row/col index in the logical matrix 
    variable logical_indices : LOGICAL_INDEX_ARRAY; 
    -- this is the offset into the bit vector that stores the matrix counts 
    variable physical_offset : INTEGER; 
     
    -- our lookup table entries consist of an attribute atom, followed by the logical index (sufficient size  
    --     to index the existence matrix) 
    variable lookup_table : LOOKUP_ARRAY; 
     begin 
      
     wait until rising_edge(CLK); 
 
     case state is 
        when DISABLED => 
         if (CE = '1') then 
           state <= IDLE; 
           -- todo: determine next free physical memory address 
           physical_offset := 0; 
           GOAL <= (OTHERS => 'Z'); 
         end if; 
        when IDLE => 
         if (CE = '0') then 
              state <= DISABLED; 
         end if;            
       sel_int := CONV_INTEGER(SEL);       
         NOV_CNT <= (OTHERS => 'U'); 
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         EXP_CNT <= (OTHERS => 'U'); 
         GOAL <= (OTHERS => 'Z'); 
         for i in 0 to logical_indices'length-1 loop 
          logical_indices(i) := UNASSIGNED; 
         end loop; 
          
         if (sel_int /= 0) then           
           
          outer:= sel_int; 
          inner:= sel_int - 1;        
           
          -- put the signals into a vector, so that the rest of this routine can 
            -- manipulate n number of signals in a generic manner 
          -- todo: consider some kind of generate statement?  
            ATTR_SIGNALS(0) := ATTR_0; 
            ATTR_SIGNALS(1) := ATTR_1; 
            ATTR_SIGNALS(2) := ATTR_2; 
            ATTR_SIGNALS(3) := ATTR_3; 
                    
             if (WE = '0') then           
              state <= OBSERVE; 
              P_WE <= '1'; 
                P_OE <= '1'; 
            elsif (OE = '0') then 
              if (Is_X(goal_category)) then 
                 state <= IMAGINE_RESPONSE; 
              else 
                 state <= IMAGINE_ATTR_QUERY; 
                 P_WE <= '1'; 
                 P_OE <= '0'; 
              end if; 
          end if; 
         end if; 
        when OBSERVE => 
           -- reset variables for new context to observe 
           exp_int := 0; 
         nov_int := 0; 
          
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             pairwise: while (sel_int /= 0) loop          
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- if it is already set (observed), then increment the experience score 
          if (cache(physical_offset) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
              -- this is where we actually set the observation count in the segment 
              cache(physical_offset) := '1'; 
          end if;  
           
          -- iterate to next unique pair  
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int); 
               
        end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
         if (sel_int = 0) then 
             -- todo: wait for a ready/done signal from flash? 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;         
           
       when IMAGINE_RESPONSE => 
           -- reset variables for new context to observe 
           exp_int := 0; 
         nov_int := 0; 
 
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             unique_pair: while (sel_int /= 0) loop         
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- if it is already set (observed), then increment the experience score 
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          if (cache(physical_offset) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
              -- this is where we actually set the observation count in the segment 
              cache(physical_offset) := '1'; 
          end if;              
                                        
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int);                   
         end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
          
         if (sel_int = 0) then 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;        
        
       when IMAGINE_ATTR_QUERY => 
 
           -- todo: NOT IMPLEMENTED 
         state <= QUERY_RESULTS; 
          
       when QUERY_RESULTS => 
        
         report "query results complete"; 
        P_WE <= '1'; 
        P_OE <= '1'; 
         state <= IDLE; 
        
     end case; 
 end process;      
     
end; 
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Appendix D Naïve Small Matrix 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Limited Small Matrix implementation 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : SimpleSmallMatrix.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This architecture of the AssocMemory entity seeks to duplicate the software  
--           implementation referred to as the "small matrix" design.  The fundamental 
--           technique is to keep a matrix of size NxN where N is the number of attributes 
--           observed, not the number of possible attributes.  This implementation only stores 
--           half of the matrix (since it is symmetrical), and only stores a single bit for 
--           each pairing, to represent an existence memory.  Therefore, for N unique observed 
--            attributes, this implementation consumes N*N/2 bits of storage (N*N/16 bytes) which 
--           was done as a single bit vector in this simplified implementation. 
-- 
--           In general cases, this implementation is very compact, using storage resources 
--           very efficiently, while performing observes very quickly.  However, the trade-off 
--           is speed of queries, which typically involve more searching and lookups than the 
--           large matrix design.  This query trade-off is usually acceptable for smaller values 
--           of N. 
-- 
--------------------------------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
use IEEE.MATH_REAL.all; 
use IEEE.STD_LOGIC_ARITH.all; 
 
library LargeMatrix; 
use LargeMatrix.MatrixTypes.all; 
 
architecture SimpleSmallMatrix of AssocMemory is 
 
    -- values for FSM 
    type SmallMatrixState is (DISABLED, IDLE, OBSERVE, IMAGINE_RESPONSE, IMAGINE_ATTR_QUERY, QUERY_RESULTS); 
    signal state : SmallMatrixState := DISABLED; 
 
    constant max_context_size : NATURAL := 4; 
     
    -- support a 256 attribute matrix (256 x 256) 
    constant matrix_dimension : INTEGER := 256; 
 
    -- the entire existence matrix is managed as a single vector 
    -- since the matrix is symmetrical, only need to store half of it 
    -- this means a N x N matrix requires N*N/2 BITS of storage. 
    -- For 256, this means 8 kB.  
    subtype EXISTENCE_MATRIX is STD_LOGIC_VECTOR(0 to matrix_dimension * matrix_dimension / 2); 
     
    -- data type for representing attribute atoms 
    subtype ATTR is STD_LOGIC_VECTOR(attr_width-1 downto 0); 
     
    -- data type for containing all attributes in a single context 
    type ATTR_ARRAY is  ARRAY(0 to max_context_size-1) OF ATTR; 
     
    -- data type for holding each logical row/col index for an attribute 
    type LOGICAL_INDEX_ARRAY is ARRAY(0 to max_context_size-1) OF INTEGER; 
 
    -- uninitialized value placeholder ("tombstone") used when context size is less than 4 
    constant UNASSIGNED : INTEGER := -9; 
     
    -- data type for holding all logical row/col indices for observed attributes 
    -- a better implementation would actually support some sort of lookup (constant order) 
    -- function, such as a hash.  For demonstration purposes, this implementation does 
    -- an exhaustive, linear search (order N). 
    type LOOKUP_ARRAY is ARRAY(0 to matrix_dimension-1) OF ATTR; 
 
 -- 
 -- This function determines the offset into the physical matrix storage vector given a  
 -- logical row/column address. 
 -- 
 function COMPUTE_PHYSICAL_OFFSET(row : in INTEGER; col : in INTEGER) return INTEGER is 
 
    variable offset : INTEGER; 
  
     -- the physical storage maps half of the square matrix onto a single bit vector: 
     -- 
     -- 
     --         LOGICAL FORM IS A MATRIX           PHYSICAL FORM IS AN ARRAY 
     -- 
     --            COLUMNS 
     --         0   1    2    3    4                   INDEX   (ROW, COL) 
     --          -----------------------                  0 =>  (0,0) 
     --      0  |  0                              1 =>  (1,0) 
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     --  ROWS 1  | 1    2                              2 =>  (1,1) 
     --      2   |   3    4    5                         3 =>  (2,0) 
     --      3   |   6    7    8    9                    4 =>  (2,1) 
     --          |                               ... etc. 
     -- 
     --    .. etc. 
     -- 
     -- Since only half of the matrix is stored, we first find the row offset based on how 
     -- many columns are in each row, and then add the column offset to that row offset. 
     -- 
     -- So, row R has an offset of the sum of the series of (i), for i=0 to R.  This is more easily computed 
     -- as R * (R+1) / 2.  Then, we just add the column value, C, to determine the complete offset for the 
     -- row, column pair.  Offset => [R * (R+1) / 2] + C. For example, (3,1) corresponds to 3*4/2 + 1 = 7. 
 begin 
     offset := row * (row + 1) / 2; 
     return offset + col; 
 end COMPUTE_PHYSICAL_OFFSET; 
 
 -- 
 -- Given an array of attribute atoms (ATTR_SIGNALS), determine the logical row/col index for 
 -- each and put those values in the logical_indices return value.  The indices are either 
 -- found in the lookup_table (attributes that were previously observed), or they are added 
 -- into the lookup_table at the next_free_index (attributes that have never been observed). 
 procedure FIND_INDICES(ATTR_SIGNALS : in ATTR_ARRAY; lookup_table: inout LOOKUP_ARRAY;  
                logical_indices : inout LOGICAL_INDEX_ARRAY; 
                next_free_index : inout INTEGER) is 
                   
    variable lookup_entry : ATTR; 
     
    variable i : INTEGER := 0; 
     
 begin 
     -- loop over entire table, to try and find already existing index 
     for i in 0 to next_free_index-1 loop 
        lookup_entry := lookup_table(i); 
        -- compare the table entry to each attribute, if matched, assign the logical index 
        for j in 0 to logical_indices'length-1 loop         
          if ((not Is_X(ATTR_SIGNALS(j)) and (not Is_X(lookup_entry)) and (lookup_entry = ATTR_SIGNALS(j)))) then 
              logical_indices(j) := i;         
          end if; 
        end loop; 
     end loop; 
      
     -- loop over attributes, if any are unassigned, then give them the next free slot at end of table 
     for a in 0 to logical_indices'length-1 loop 
        if (not Is_X(ATTR_SIGNALS(a)) and logical_indices(a) = UNASSIGNED) then 
          logical_indices(a) := next_free_index; 
          lookup_table(next_free_index) := ATTR_SIGNALS(a); 
          next_free_index := next_free_index + 1; 
        end if; 
     end loop; 
      
 end FIND_INDICES; 
  
 begin process 
      
    variable sel_int : INTEGER; 
    variable exp_int, nov_int : INTEGER; 
    variable outer, inner : INTEGER; 
 
    alias goal_category : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width-1 downto attr_width/2); 
    alias goal_value    : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width/2 - 1 downto 0); 
 
    variable ATTR_SIGNALS : ATTR_ARRAY; 
     
    variable cache: EXISTENCE_MATRIX := (OTHERS => '0');   
     
    variable next_free_index : INTEGER := 0; 
     
    -- this structure maps attribute atom values to their row/col index in the logical matrix 
    variable logical_indices : LOGICAL_INDEX_ARRAY; 
    -- this is the offset into the bit vector that stores the matrix counts 
    variable physical_offset : INTEGER; 
     
    -- our lookup table entries consist of an attribute atom, followed by the logical index (sufficient size  
    --     to index the existence matrix) 
    variable lookup_table : LOOKUP_ARRAY; 
     begin 
      
     wait until rising_edge(CLK); 
 
     case state is 
        when DISABLED => 
         if (CE = '1') then 
           state <= IDLE; 
           -- todo: determine next free physical memory address 
           physical_offset := 0; 
           GOAL <= (OTHERS => 'Z'); 
         end if; 
        when IDLE => 
         if (CE = '0') then 
              state <= DISABLED; 
         end if;            
       sel_int := CONV_INTEGER(SEL);       
         NOV_CNT <= (OTHERS => 'U'); 
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         EXP_CNT <= (OTHERS => 'U'); 
         GOAL <= (OTHERS => 'Z'); 
         for i in 0 to logical_indices'length-1 loop 
          logical_indices(i) := UNASSIGNED; 
         end loop; 
          
         if (sel_int /= 0) then           
           
          outer:= sel_int; 
          inner:= sel_int - 1;        
           
          -- put the signals into a vector, so that the rest of this routine can 
            -- manipulate n number of signals in a generic manner 
          -- todo: consider some kind of generate statement?  
            ATTR_SIGNALS(0) := ATTR_0; 
            ATTR_SIGNALS(1) := ATTR_1; 
            ATTR_SIGNALS(2) := ATTR_2; 
            ATTR_SIGNALS(3) := ATTR_3; 
                    
             if (WE = '0') then           
              state <= OBSERVE; 
              P_WE <= '1'; 
                P_OE <= '1'; 
            elsif (OE = '0') then 
              if (Is_X(goal_category)) then 
                 state <= IMAGINE_RESPONSE; 
              else 
                 state <= IMAGINE_ATTR_QUERY; 
                 P_WE <= '1'; 
                 P_OE <= '0'; 
              end if; 
          end if; 
         end if; 
        when OBSERVE => 
           -- reset variables for new context to observe 
           exp_int := 0; 
         nov_int := 0; 
          
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             pairwise: while (sel_int /= 0) loop          
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- if it is already set (observed), then increment the experience score 
          if (cache(physical_offset) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
              -- this is where we actually set the observation count in the segment 
              cache(physical_offset) := '1'; 
          end if;  
           
          -- iterate to next unique pair  
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int); 
               
        end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
         if (sel_int = 0) then 
             -- todo: wait for a ready/done signal from flash? 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;         
           
       when IMAGINE_RESPONSE => 
           -- reset variables for new context to observe 
           exp_int := 0; 
         nov_int := 0; 
 
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             unique_pair: while (sel_int /= 0) loop         
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              physical_offset := COMPUTE_PHYSICAL_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- if it is already set (observed), then increment the experience score 
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          if (cache(physical_offset) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
              -- this is where we actually set the observation count in the segment 
              cache(physical_offset) := '1'; 
          end if;              
                                        
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int);                   
         end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
          
         if (sel_int = 0) then 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;        
        
       when IMAGINE_ATTR_QUERY => 
 
           -- todo: NOT IMPLEMENTED 
         state <= QUERY_RESULTS; 
          
       when QUERY_RESULTS => 
        
         report "query results complete"; 
        P_WE <= '1'; 
        P_OE <= '1'; 
         state <= IDLE; 
        
     end case; 
 end process;      
     
end; 
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Appendix E Small Matrix 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Segmented Small Matrix implementation 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : PlanarSegmentSimpleSmallMatrix.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This architecture of the AssocMemory entity seeks to duplicate the software  
--           implementation referred to as the "small matrix" design.  The fundamental 
--           technique is to keep a matrix of size NxN where N is the number of attributes 
--           observed, not the number of possible attributes.  This implementation only stores 
--           half of the matrix (since it is symmetrical), and does so using the segments and 
--           bit planes structures used by the LargeMatrix implementation (which also reflects 
--           the software implementation of the Small Matrix. 
-- 
--           In general cases, this implementation is very compact, using storage resources 
--           very efficiently, while performing observes very quickly.  However, the trade-off 
--           is speed of queries, which typically involve more searching and lookups than the 
--           large matrix design.  This query trade-off is usually acceptable for smaller values 
--           of N. 
-- 
--------------------------------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
use IEEE.MATH_REAL.all; 
use IEEE.STD_LOGIC_ARITH.all; 
 
library LargeMatrix; 
use LargeMatrix.MatrixTypes.all; 
 
architecture PlanarSegmentSmallMatrix of AssocMemory is 
 
 
    -- Dimensions of planar data: 
    --   map_width is how many bits are in the map 
    --   map_depth is how many bits are in each mapped data 
    constant planar_map_width : natural := 4; --  
    constant planar_map_depth : natural := 4;   
    -- together, the above dimensions specify 4 4-bit sections of planar data --> 16 assoc. counts per segment 
 
    -- how many counts are in each segment 
    constant planar_data_width : natural := planar_map_width * planar_map_depth;  
        
    -- values for FSM 
    type SmallMatrixState is (DISABLED, IDLE, OBSERVE, IMAGINE_RESPONSE, IMAGINE_ATTR_QUERY, QUERY_RESULTS); 
    signal state : SmallMatrixState := DISABLED; 
     
    constant max_context_size : NATURAL := 4; 
    -- data type for representing attribute atoms 
    subtype ATTR is STD_LOGIC_VECTOR(attr_width-1 downto 0); 
     
    -- data type for containing all attributes in a single context 
    type ATTR_ARRAY is  ARRAY(0 to max_context_size-1) OF ATTR; 
 
    -- a Segment is defined as a vector of bits and holds the bit plane map and data 
    subtype SegmentStructure is STD_LOGIC_VECTOR(planar_data_width-1 downto 0); 
        
    -- how many segments can fit in one block, this number would likely be much larger 
    -- in a non-prototype implementation (eg, 4096) 
    constant segments_per_block : natural := 16; 
     
    -- a Block is defined as a vector of segments 
    type BlockType is ARRAY(0 to segments_per_block-1) of SegmentStructure; 
     
    -- memory holds maximum of 8 blocks 
    constant block_store_size : natural := 8; 
    -- an array of blocks is used as a cache, but could be entire memory 
    type BlockList is ARRAY(0 to block_store_size-1) of BlockType; 
           
    -- data type for holding each logical row/col index for every attribute in context 
    type LOGICAL_INDEX_ARRAY is ARRAY(0 to max_context_size-1) OF INTEGER; 
     
    constant UNASSIGNED : INTEGER := -9; 
 
    -- the maximum dimension of the matrix is the number of unique attributes that 
    -- can be represented in the available segments and blocks.  For the triangular 
    -- matrix, this is the square root of the total co-occurrences doubled. 
    constant total_co_occurrences : REAL := REAL(2 * block_store_size * segments_per_block * planar_data_width); 
    constant matrix_dimension : INTEGER := INTEGER(CEIL(SQRT(total_co_occurrences))); 
     
    -- data type for holding all logical row/col indices for observed attributes 
    -- a better implementation would actually support some sort of lookup (constant order) 
    -- function, such as a hash.  For demonstration purposes, this implementation does 
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    -- an exhaustive, linear search (order N). 
    type LOOKUP_ARRAY is ARRAY(0 to matrix_dimension-1) OF ATTR; 
 
 -- 
 -- This function determines the so-called "point offset" given the logical row/column address. 
 -- The point offset is how many co-occurrences into the triangular matrix this co-occurrence 
 -- is stored.  That is, how far does the triangular matrix have to be traversed to reach the  
 -- co-occurrence (row,col pair) requested. 
 -- 
 function COMPUTE_POINT_OFFSET(row : in INTEGER; col : in INTEGER) return INTEGER is 
 
    variable offset : INTEGER; 
  
     -- the physical storage maps half of the square matrix onto a single bit vector: 
     -- 
     -- 
     --         LOGICAL FORM IS A MATRIX           PHYSICAL FORM IS AN ARRAY 
     -- 
     --            COLUMNS 
     --         0   1    2    3    4                   OFFSET  (ROW, COL) 
     --          -----------------------                  0 =>  (0,0) 
     --      0  |  0                              1 =>  (1,0) 
     --  ROWS 1  | 1    2                              2 =>  (1,1) 
     --      2   |   3    4    5                         3 =>  (2,0) 
     --      3   |   6    7    8    9                    4 =>  (2,1) 
     --          |                               ... etc. 
     -- 
     --    .. etc. 
     -- 
     -- Since only half of the matrix is stored, we first find the row offset based on how 
     -- many columns are in each row, and then add the column offset to that row offset. 
     -- 
     -- So, row R has an offset of the sum of the series of (i), for i=0 to R.  This is more easily computed 
     -- as R * (R+1) / 2.  Then, we just add the column value, C, to determine the complete offset for the 
     -- row, column pair.  Offset => [R * (R+1) / 2] + C. For example, (3,1) corresponds to 3*4/2 + 1 = 7. 
 begin 
     offset := row * (row + 1) / 2; 
     return offset + col; 
 end COMPUTE_POINT_OFFSET; 
 
 -- Given an offset into the matrix, determine which block the co-occurrence will 
 -- be stored within (this is, in effect, the "block offset"). 
 function GET_BLOCK_INDEX(offset : in INTEGER) return INTEGER is  
 begin 
    return offset / (segments_per_block * planar_data_width); 
 end GET_BLOCK_INDEX; 
  
 -- Given an offset into the matrix, determine which segment the co-occurrence will 
 -- be stored within (this is the index of the segment for a particular block). 
 function GET_SEGMENT_INDEX(offset : in INTEGER) return INTEGER is 
 begin 
     return (offset mod (segments_per_block * planar_data_width)) / planar_data_width; 
 end GET_SEGMENT_INDEX; 
  
 -- Given an offset into the matrix, determine which bit in the plane the  
 -- co-occurrence will be stored within (this is the index of the bit for 
 -- the particular plane/segment).  
 function GET_POINT_ADDRESS(offset : in INTEGER) return INTEGER is 
 begin 
     return planar_data_width-1 - (offset mod planar_data_width); 
 end; 
  
 -- 
 -- Given an array of attribute atoms (ATTR_SIGNALS), determine the logical row/col index for 
 -- each and put those values in the logical_indices return value.  The indices are either 
 -- found in the lookup_table (attributes that were previously observed), or they are added 
 -- into the lookup_table at the next_free_index (attributes that have never been observed). 
 procedure FIND_INDICES(ATTR_SIGNALS : in ATTR_ARRAY; lookup_table: inout LOOKUP_ARRAY;  
                logical_indices : inout LOGICAL_INDEX_ARRAY; 
                next_free_index : inout INTEGER) is 
                   
    variable lookup_entry : ATTR; 
     
    variable i : INTEGER := 0; 
     
 begin 
     -- loop over entire table, to try and find already existing index 
     for i in 0 to next_free_index-1 loop 
        lookup_entry := lookup_table(i); 
        -- compare the table entry to each attribute, if matched, assign the logical index 
        for j in 0 to logical_indices'length-1 loop         
          if ((not Is_X(ATTR_SIGNALS(j)) and (not Is_X(lookup_entry)) and (lookup_entry = ATTR_SIGNALS(j)))) then 
              logical_indices(j) := i;         
          end if; 
        end loop; 
     end loop; 
      
     -- loop over attributes, if any are unassigned, then give them the next free slot at end of table 
     for a in 0 to logical_indices'length-1 loop 
        if (not Is_X(ATTR_SIGNALS(a)) and logical_indices(a) = UNASSIGNED) then 
          logical_indices(a) := next_free_index; 
          lookup_table(next_free_index) := ATTR_SIGNALS(a); 
          next_free_index := next_free_index + 1; 
        end if; 
     end loop; 
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 end FIND_INDICES; 
  
 begin process 
      
    variable sel_int : INTEGER; 
    variable exp_int, nov_int : INTEGER; 
    variable outer, inner : INTEGER; 
 
    alias goal_category : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width-1 downto attr_width/2); 
    alias goal_value    : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) is GOAL(attr_width/2 - 1 downto 0); 
     
    variable block_cache : BlockList; 
 
    variable next_free_index : INTEGER := 0; 
     
    -- which block to access for the co-occurrence 
    variable block_index : INTEGER; 
    -- which segment within the block to access for the co-occurrence 
    variable cs_index : INTEGER; 
    -- which bit within the segment/plane for the co-occurrence 
    variable point_addr : INTEGER; 
     
    -- the segment structure holds the address and the planar data 
    variable currentSegment : SegmentStructure := (OTHERS => '0'); 
     
    variable ATTR_SIGNALS : ATTR_ARRAY; 
     
    -- this structure maps attribute atom values to their row/col index in the logical matrix 
    variable logical_indices : LOGICAL_INDEX_ARRAY; 
    -- this is the offset into the triangular matrix 
    variable point_offset : INTEGER; 
     
    -- our lookup table entries consist of an attribute atom, followed by the logical index (sufficient size  
    --     to index the existence matrix) 
    variable lookup_table : LOOKUP_ARRAY; 
     begin 
      
     wait until rising_edge(CLK); 
 
     case state is 
        when DISABLED => 
         if (CE = '1') then 
           state <= IDLE; 
           -- initialize/load block cache 
           for I in 0 to block_cache'LENGTH-1 loop 
            for J in 0 to block_cache(I)'LENGTH-1 loop 
                block_cache(I)(J) := (OTHERS => '0'); 
            end loop; 
           end loop;          
           -- todo: determine next free physical memory address      
           point_offset := 0; 
           GOAL <= (OTHERS => 'Z'); 
         end if; 
        when IDLE => 
         if (CE = '0') then 
              state <= DISABLED; 
         end if;            
       sel_int := CONV_INTEGER(SEL);       
         NOV_CNT <= (OTHERS => 'U'); 
         EXP_CNT <= (OTHERS => 'U'); 
         GOAL <= (OTHERS => 'Z'); 
         for i in 0 to logical_indices'length-1 loop 
          logical_indices(i) := UNASSIGNED; 
         end loop; 
          
         if (sel_int /= 0) then           
           
          outer:= sel_int; 
          inner:= sel_int - 1;        
           
          -- put the signals into a vector, so that the rest of this routine can 
            -- manipulate n number of signals in a generic manner 
          -- todo: consider some kind of generate statement?  
            ATTR_SIGNALS(0) := ATTR_0; 
            ATTR_SIGNALS(1) := ATTR_1; 
            ATTR_SIGNALS(2) := ATTR_2; 
            ATTR_SIGNALS(3) := ATTR_3; 
                    
             if (WE = '0') then           
              state <= OBSERVE; 
              P_WE <= '1'; 
                P_OE <= '1'; 
            elsif (OE = '0') then 
              if (Is_X(goal_category)) then 
                 state <= IMAGINE_RESPONSE; 
              else 
                 state <= IMAGINE_ATTR_QUERY; 
                 P_WE <= '1'; 
                 P_OE <= '0'; 
              end if; 
          end if; 
         end if; 
        when OBSERVE => 
           -- reset variables for new context to observe 
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           exp_int := 0; 
         nov_int := 0; 
          
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             pairwise: while (sel_int /= 0) loop          
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              point_offset := COMPUTE_POINT_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              point_offset := COMPUTE_POINT_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- from physical offset, determine block and segment indices 
          block_index := GET_BLOCK_INDEX(point_offset); 
          cs_index := GET_SEGMENT_INDEX(point_offset); 
           
          -- access segment that contains (will contain) the co-occurrence 
          currentSegment := block_cache(block_index)(cs_index); 
 
          -- determine the address of the bit within the planar data for this pairwise association 
          point_addr := GET_POINT_ADDRESS(point_offset); 
                         
          -- if it is already set (observed), then increment the experience score 
          if (currentSegment(point_addr) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
              -- this is where we actually set the observation count in the segment 
              currentSegment(point_addr) := '1'; 
          end if; 
               
          -- and then update the block with the modified segment 
          block_cache(block_index)(cs_index) := currentSegment;           
                               
          -- iterate to next unique pair  
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int); 
               
        end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
         if (sel_int = 0) then 
             -- todo: wait for a ready/done signal from flash? 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;         
           
       when IMAGINE_RESPONSE => 
           -- reset variables for new context to observe 
           exp_int := 0; 
         nov_int := 0; 
 
         -- lookup logical index values for each attribute in the context 
         FIND_INDICES(ATTR_SIGNALS, lookup_table, logical_indices, next_free_index); 
          
             unique_pair: while (sel_int /= 0) loop         
                       
          -- note: using half-matrix above, since here we put pair in "canonical order" (high x low) 
          -- and then compute physical address offset in memory cache 
          if (logical_indices(outer) > logical_indices(inner)) then 
              point_offset := COMPUTE_POINT_OFFSET(logical_indices(outer), logical_indices(inner)); 
          else 
              point_offset := COMPUTE_POINT_OFFSET(logical_indices(inner), logical_indices(outer)); 
          end if; 
 
          -- from physical offset, determine block and segment indices 
          block_index := GET_BLOCK_INDEX(point_offset); 
          cs_index := GET_SEGMENT_INDEX(point_offset); 
           
          -- access segment that contains (will contain) the co-occurrence 
          currentSegment := block_cache(block_index)(cs_index); 
 
          -- determine the address of the bit within the planar data for this pairwise association 
          point_addr := GET_POINT_ADDRESS(point_offset); 
                         
          -- if it is already set (observed), then increment the experience score 
          if (currentSegment(point_addr) = '1') then 
              exp_int := exp_int + 1; 
          -- otherwise, this is a new (novel) observation, so increment the novelty score 
          else 
              nov_int := nov_int + 1; 
          end if; 
                                                   
          NEXT_PAIR_HALF_MATRIX(inner, outer, sel_int);                   
         end loop; 
          
         -- push the experience and novelty counts onto the wire 
         EXP_CNT <= CONV_STD_LOGIC_VECTOR(exp_int, 3); 
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         NOV_CNT <= CONV_STD_LOGIC_VECTOR(nov_int, 3); 
          
         if (sel_int = 0) then 
             P_WE <= '1'; 
             P_OE <= '1'; 
             state <= IDLE; 
         end if;        
        
       when IMAGINE_ATTR_QUERY => 
 
           -- todo: NOT IMPLEMENTED 
         state <= QUERY_RESULTS; 
          
       when QUERY_RESULTS => 
        
         report "query results complete"; 
        P_WE <= '1'; 
        P_OE <= '1'; 
         state <= IDLE; 
        
     end case; 
 end process;      
     
end; 
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Appendix F Matrix Type Utilities 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Collection of types and subprograms for manipulating LargeMatrix data 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : MatrixTypes.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This package defines several types and subprograms that can be used to 
--           define and manipulate variables and signals in a LargeMatrix implementation 
--           of an AssocMemory entity. 
--------------------------------------------------------------------------------------------------- 
 
package MatrixTypes is 
     
    -- computes the nearest byte multiple greater than the given number 
    -- eg, nearestByte(8) = 8, but nearestByte(17) = 24 
    function NEAREST_BYTE (N : NATURAL) return NATURAL; 
     
    -- takes the ceiling of the log (base 2) of the given number 
    -- ie, figures out how many bits it takes to represent the given number 
    -- eg, log2ceil(32) = 5,  but log2ceil(33) = 6 
    function LOG2CEIL (N : NATURAL) return NATURAL; 
      
    -- use this procedure for observing associations in both directions (A->B and B->A) 
    -- param inner : the index of the "inner" attribute of the co-occurrence 
    -- param outer : the index of the "outer" attribute of the co-occurrence 
    -- param sel_int : indicates how many attributes are in the context (and is set to zero 
    --  when there are no more pairs) 
    procedure NEXT_PAIR_FULL_MATRIX(   inner : inout INTEGER; 
                           outer : inout INTEGER; 
                           sel_int : inout INTEGER); 
                            
    -- use this procedure for observing only pairs (A->B)   
    procedure NEXT_PAIR_HALF_MATRIX(   inner : inout INTEGER; 
                           outer : inout INTEGER; 
                           sel_int : inout INTEGER); 
 
end MatrixTypes; 
                         
package body MatrixTypes is 
     
  function NEAREST_BYTE (N : natural) return natural is 
  begin 
      if (N mod 8 = 0) then 
         return N; 
      else 
         return N + 8 - (N mod 8); 
      end if; 
  end; 
     
  function LOG2CEIL (N : natural) return natural is 
    variable i, j   : natural; 
  begin 
    i  := 0; 
    j  := 1; 
    while (j < N) loop 
      i := i + 1; 
      j := 2 * j;       
    end loop; 
    return i; 
  end log2ceil; 
   
   
 procedure NEXT_PAIR_FULL_MATRIX(   inner : inout INTEGER; 
                        outer : inout INTEGER; 
                        sel_int : inout INTEGER) is 
                         
    begin 
       if (inner = 0) then 
         outer := outer - 1; 
         inner := sel_int;       
       else 
         inner := inner - 1; 
       end if;           
        
       if (inner = outer) then 
         if (outer = 0) then 
          sel_int := 0; 
         else 
          inner := inner - 1; 
         end if; 
       end if;      
    end; 
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-- use this procedure for observing only pairs (A->B)    
 procedure NEXT_PAIR_HALF_MATRIX(   inner : inout INTEGER; 
                        outer : inout INTEGER; 
                        sel_int : inout INTEGER) is 
    begin 
       if (inner = 0) then 
         outer := outer - 1; 
         if (outer = 0) then 
          sel_int := 0; 
         else 
          inner := outer - 1;   
         end if; 
       else 
         inner := inner - 1; 
       end if;           
 
    end; 
     
end MatrixTypes; 
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Appendix G Top Level 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : SaffronOne Core (LargeMatrix w/ Flash) 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : C:\vhdl\designs\SaffronOne\LargeMatrix\compile\SaffronOne_TopLevel.vhd 
-- Generated   : Wed Apr  6 11:34:32 2005 
-- From        : C:\vhdl\designs\SaffronOne\LargeMatrix\src\SaffronOne_TopLevel.bde 
-- By          : Bde2Vhdl ver. 2.6 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description :  
-- 
--------------------------------------------------------------------------------------------------- 
-- Design unit header -- 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
 
entity SaffronOne_TopLevel is 
  generic( 
       -- associative memory capacity 
    attr_width : natural  := 16; -- allows for 2^16 attributes (64k) 
 
    -- persistence dimensions 
    data_width : natural  := 4*8; -- 32-bit (4 byte) word 
    addr_width : natural  :=  20 -- bits needed to address a word 
        -- result is 1M words or 4MB of persistent storage  
  ); 
  port( 
       CE : in std_ulogic; 
       CLK : in std_ulogic; 
       Imagine : in std_ulogic; 
       Observe : in std_ulogic; 
       AttrBus0 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       AttrBus1 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       AttrBus2 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       AttrBus3 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       AttrSel : in STD_LOGIC_VECTOR(1 downto 0); 
       Busy : out STD_LOGIC; 
       Experience : out STD_LOGIC_VECTOR(2 downto 0); 
       Novelty : out STD_LOGIC_VECTOR(2 downto 0); 
       GoalBus : inout STD_LOGIC_VECTOR(attr_width-1 downto 0) 
  ); 
end SaffronOne_TopLevel; 
 
architecture SaffronOne_TopLevel of SaffronOne_TopLevel is 
 
---- Component declarations ----- 
 
component AssocMemory 
  generic( 
       addr_width : NATURAL; 
       attr_width : NATURAL; 
       data_width : NATURAL 
  ); 
  port ( 
       ATTR_0 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       ATTR_1 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       ATTR_2 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       ATTR_3 : in STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       CE : in std_ulogic; 
       CLK : in std_ulogic; 
       OE : in std_ulogic; 
       SEL : in STD_LOGIC_VECTOR(1 downto 0); 
       WE : in std_ulogic; 
       EXP_CNT : out STD_LOGIC_VECTOR(2 downto 0); 
       NOV_CNT : out STD_LOGIC_VECTOR(2 downto 0); 
       P_ADDR : out STD_LOGIC_VECTOR(addr_width-1 downto 0); 
       P_OE : out std_ulogic; 
       P_WE : out std_ulogic; 
       GOAL : inout STD_LOGIC_VECTOR(attr_width-1 downto 0); 
       P_DATA : inout STD_LOGIC_VECTOR(data_width-1 downto 0) 
  ); 
end component; 
component persistence 
  generic( 
       addr_width : NATURAL := 20; 
       data_width : NATURAL := (4*8); 
       length : NATURAL := (1024*1024); 
       read_delay : TIME := 5 ns; 
       write_delay : TIME := 10 ns 
  ); 
  port ( 
       ADDR : in STD_LOGIC_VECTOR(addr_width-1 downto 0); 
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       CE : in std_ulogic; 
       CLK : in std_ulogic; 
       OE : in std_ulogic; 
       WE : in std_ulogic; 
       DATA : inout STD_LOGIC_VECTOR(data_width-1 downto 0) := (others => 'Z') 
  ); 
end component; 
 
---- Signal declarations used on the diagram ---- 
 
signal NET93 : std_ulogic; 
signal NET99 : std_ulogic; 
signal ADDR_BUS : STD_LOGIC_VECTOR (addr_width-1 downto 0); 
signal DATA_BUS : STD_LOGIC_VECTOR (data_width-1 downto 0); 
 
begin 
 
----  Component instantiations  ---- 
 
AM1 : AssocMemory 
  generic map ( 
       addr_width => addr_width, 
       attr_width => attr_width, 
       data_width => data_width 
  ) 
  port map( 
       ATTR_0 => AttrBus0( attr_width-1 downto 0 ), 
       ATTR_1 => AttrBus1( attr_width-1 downto 0 ), 
       ATTR_2 => AttrBus2( attr_width-1 downto 0 ), 
       ATTR_3 => AttrBus3( attr_width-1 downto 0 ), 
       CE => CE, 
       CLK => CLK, 
       EXP_CNT => Experience, 
       GOAL => GoalBus( attr_width-1 downto 0 ), 
       NOV_CNT => Novelty, 
       OE => Imagine, 
       P_ADDR => ADDR_BUS( addr_width-1 downto 0 ), 
       P_DATA => DATA_BUS( data_width-1 downto 0 ), 
       P_OE => NET99, 
       P_WE => NET93, 
       SEL => AttrSel, 
       WE => Observe 
  ); 
 
Flash1 : persistence 
  port map( 
       ADDR => ADDR_BUS( addr_width-1 downto 0 ), 
       CE => CE, 
       CLK => CLK, 
       DATA => DATA_BUS( data_width-1 downto 0 ), 
       OE => NET99, 
       WE => NET93 
  ); 
 
Busy <= not(NET93 and NET99); 
 
 
end SaffronOne_TopLevel; 
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Appendix H Persistence 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Persistence 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description : This entity defines generics to specify the dimensions of the persistence 
--           (length, width, and address space) as well as performance behavior 
--           for read and write delay values. 
-- 
--------------------------------------------------------------------------------------------------- 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_UNSIGNED.all; 
 
 
entity Persistence is 
    generic(                  
        -- setup the generics for a 32Mbit persistence (1M x 32) 
 
       data_width : natural := 4 * 8;  -- use 4 byte words (32-bits wide) 
       length : natural := 1024 * 1024; -- use 1024k (1M) words 
       addr_width : natural  := 20; -- need 20 bits to address 1M words  
                                          
       read_delay : TIME := 5 ns; 
       write_delay : TIME := 10 ns 
        ); 
        
     port( 
        -- address of the memory data to read/write 
        ADDR : in STD_LOGIC_VECTOR(addr_width-1 downto 0); 
         
        -- data value to be written to (or read from) above memory address 
        DATA : inout STD_LOGIC_VECTOR(data_width-1 downto 0) := (OTHERS => 'Z'); 
         
        -- ChipEnable line (activates chip - active high) 
        CE : in STD_ULOGIC; 
         
        -- Output Enable line (signals a memory read - active low) 
        OE : in STD_ULOGIC; 
         
        -- Write Enable line (signals a memory write - active low) 
        WE : in STD_ULOGIC; 
         
        -- Clock signal 
        CLK : in STD_ULOGIC 
         ); 
end Persistence; 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : BasicFlash 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
-- Description:  This architecture is meant to emulate a very simple flash memory component. 
--           It supports reading/writing a single data word (found on the DATA bus) 
--           to/from the memory at the location specified by the ADDR bus. 
--                       
-- Notes: 
--           Real world could use AMD's AM29BDD320G instead of this trivial implementation 
-- 
architecture BasicFlash of Persistence is 
 
begin                        
 process 
       subtype WORD is STD_LOGIC_VECTOR(data_width-1 downto 0); 
       type MEMORY is ARRAY (0 to length-1) OF WORD; 
       variable mem: MEMORY;  -- can be backed by a file, when we use "real" flash model 
       variable addr_int : INTEGER; 
 begin         
     wait until (CE = '1' and rising_edge(CLK)); 
     if (WE'event and WE = '0') then -- if write enabled is turned on (active low) then release bus 
       DATA <= (OTHERS => 'Z'); 
     elsif (OE = '0') then          -- Output Enable (Neg) --> Read from memory onto bus 
       addr_int := CONV_INTEGER(ADDR);    
       DATA <= mem(addr_int) after read_delay; 
     elsif WE = '0' then         -- Write Enable (Neg) --> Write from bus onto memory 
       addr_int := CONV_INTEGER(ADDR);    
           mem(addr_int) := DATA; 
       wait for write_delay;         
     end if; 
  end process;   
end BasicFlash; 
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Appendix I Testbench 
 
--------------------------------------------------------------------------------------------------- 
-- 
-- Title       : Test Bench for saffronone based on file input 
-- Design      : LargeMatrix 
-- Author      : Brian McGiverin 
-- Company     : Saffron Technology, Inc. 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- File        : TestBench\saffronone_filedriven_TB.vhd 
-- 
--------------------------------------------------------------------------------------------------- 
-- 
-- Description :  
-- 
--------------------------------------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_textio.all; 
use ieee.std_logic_unsigned.all; 
 
library std; 
use std.textio.all; 
 
library LargeMatrix; 
use LargeMatrix.all; 
 
entity saffronone_filedriven_tb is 
       generic( 
       attr_width : NATURAL := 16; 
       data_width : NATURAL := 32; 
       addr_width : NATURAL := 20; 
        
       clk_period : TIME := 10ns; 
       test_file_name : STRING := "testfile.dat" 
       ); 
end saffronone_filedriven_tb; 
 
architecture TB_ARCHITECTURE of saffronone_filedriven_tb is 
    -- Component declaration of the tested unit 
    component saffronone_toplevel 
       generic( 
       attr_width : NATURAL := 16; 
       data_width : NATURAL := 32; 
       addr_width : NATURAL := 20 ); 
    port( 
       CE : in std_ulogic; 
       CLK : in std_ulogic; 
       Imagine : in std_ulogic; 
       Observe : in std_ulogic; 
       AttrBus0 : in std_logic_vector((attr_width-1) downto 0); 
       AttrBus1 : in std_logic_vector((attr_width-1) downto 0); 
       AttrBus2 : in std_logic_vector((attr_width-1) downto 0); 
       AttrBus3 : in std_logic_vector((attr_width-1) downto 0); 
       AttrSel : in std_logic_vector(1 downto 0); 
       Busy : out std_logic; 
       GoalBus : inout std_logic_vector((attr_width-1) downto 0); 
       Novelty : out std_logic_vector(2 downto 0); 
       Experience : out std_logic_vector(2 downto 0) ); 
    end component; 
 
    -- Stimulus signals - signals mapped to the input and inout ports of tested entity 
    signal CE : std_ulogic; 
    signal CLK : std_ulogic; 
    signal Imagine : std_ulogic; 
    signal Observe : std_ulogic; 
    signal AttrBus0 : std_logic_vector((attr_width-1) downto 0); 
    signal AttrBus1 : std_logic_vector((attr_width-1) downto 0); 
    signal AttrBus2 : std_logic_vector((attr_width-1) downto 0); 
    signal AttrBus3 : std_logic_vector((attr_width-1) downto 0); 
    signal AttrSel : std_logic_vector(1 downto 0); 
    signal GoalBus : std_logic_vector((attr_width-1) downto 0) := (OTHERS => 'Z'); 
    -- Observed signals - signals mapped to the output ports of tested entity 
    signal Busy : std_logic; 
    signal Novelty : std_logic_vector(2 downto 0); 
    signal Experience : std_logic_vector(2 downto 0); 
 
    -- Add your code here ... 
 
begin 
 
    -- Unit Under Test port map 
    UUT : saffronone_toplevel 
       generic map ( 
         attr_width => attr_width, 
         data_width => data_width, 
         addr_width => addr_width 
       ) 
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       port map ( 
         CE => CE, 
         CLK => CLK, 
         Imagine => Imagine, 
         Observe => Observe, 
         AttrBus0 => AttrBus0, 
         AttrBus1 => AttrBus1, 
         AttrBus2 => AttrBus2, 
         AttrBus3 => AttrBus3, 
         AttrSel => AttrSel, 
         Busy => Busy, 
         GoalBus => GoalBus, 
         Novelty => Novelty, 
         Experience => Experience 
       ); 
 
    -- Add your stimulus here ... 
        
--   AttrBus0 <= x"0002", x"000A" after 40ns, x"000B" after 90ns; 
--   AttrBus1 <= x"0003", x"000C" after 40ns, x"000D" after 90ns; 
--   AttrBus2 <= x"0010" after 90ns; 
--   AttrSel <= "01" after 5ns, "00" after 20ns, "01" after 45ns, "00" after 60ns, "10" after 95ns, "00" after 105 ns;           
 
    CLK_PULSE: process 
    begin 
       wait for clk_period; 
       if (CLK = 'U') then  
         CLK <= '0'; 
       else 
         CLK <= not CLK; 
       end if; 
    end process; 
     
    FILE_DRIVER: process 
     
    file test_file : TEXT open read_mode is test_file_name; 
    variable command : CHARACTER; 
    variable buf     : LINE; 
     
    type driver_state is (INIT, READ, RUN); 
    variable state : driver_state := INIT; 
     
    type ATTR_ARRAY is  ARRAY(0 to 3) OF STD_LOGIC_VECTOR(attr_width-1 downto 0); 
    variable ATTR_SIGNALS : ATTR_ARRAY; 
 
    variable attr_selection : STD_LOGIC_VECTOR(1 downto 0); 
    variable goal_category : STD_LOGIC_VECTOR(attr_width/2 - 1 downto 0) := (OTHERS => 'U'); 
    begin           
       case state is 
         when INIT => 
          CE <= '1'; 
          state := READ; 
         when READ => 
          -- when EOF is reached, shut down/disable the chip and stop the clock 
          if (endfile(test_file)) then 
              CE <= '0'; 
          else 
              readline(test_file, buf); 
              read(buf, command); 
              case command is 
                 when 'O' =>  -- observe command (active low) 
                   read(buf, attr_selection); 
                   for I in 0 to CONV_INTEGER(attr_selection) loop 
                    hread(buf, ATTR_SIGNALS(I)); 
                   end loop;     
                   Imagine <= '1'; 
                   Observe <= '0';    
                 when 'I' =>   -- imagine command (active low) 
                   read(buf, attr_selection); 
                   for I in 0 to CONV_INTEGER(attr_selection) loop 
                    hread(buf, ATTR_SIGNALS(I)); 
                   end loop; 
                   Imagine <= '0'; 
                   Observe <= '1';                       
                   if (buf'LENGTH /= 0) then 
                    hread(buf, goal_category); 
                    GoalBus(attr_width -1 downto attr_width/2) <= goal_category; 
                   end if; 
                 when others => 
                   assert false 
                    report "Invalid/Unexpected character " & command;                   
              end case; 
               
              -- put the read signals onto their respective buses 
              -- the selection code will indicate which ones are to be considered part of the context. 
              AttrBus0 <= ATTR_SIGNALS(0); 
              AttrBus1 <= ATTR_SIGNALS(1); 
              AttrBus2 <= ATTR_SIGNALS(2); 
              AttrBus3 <= ATTR_SIGNALS(3); 
              AttrSel <= attr_selection;            
              state := RUN;             
          end if; 
         when RUN => 
          loop  
              wait for clk_period; 
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              exit when Busy = '0'; 
          end loop; 
          AttrSel <= (OTHERS => '0'); 
          state := READ; 
         end case; 
       wait until falling_edge(CLK); 
    end process; 
     
end TB_ARCHITECTURE; 
 
configuration TESTBENCH_FOR_saffronone_filedriven of saffronone_filedriven_tb is 
    for TB_ARCHITECTURE 
       for UUT : saffronone_toplevel 
         use entity work.saffronone_toplevel(saffronone_toplevel); 
         for saffronone_toplevel 
          for AM1 : AssocMemory 
              use entity LargeMatrix.AssocMemory (planarsegmentsmallmatrix); 
              --use entity LargeMatrix.AssocMemory (planarsegmentlargematrix); 
              --use entity LargeMatrix.AssocMemory (smallmatrix);                  
          end for; 
         end for;      
       end for; 
    end for; 
end TESTBENCH_FOR_saffronone_filedriven; 
 
 
 




